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0 SMALL-TIME KERNEL EXPANSION FOR SOLUTIONS OF STOCHASTIC

DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS

FABRICE BAUDOIN AND CHENG OUYANG

ABSTRACT. The goal of this paper is to show that under some assumptions, for a d-dimensional
fractional Brownian motion with Hurst parameterH > 1/2, the density of the solution of the
stochastic differential equation

Xx
t = x+

d
∑

i=1

∫ t

0

Vi(X
x
s )dB

i
s,

admits the following asymptotics in small times

p(t;x, y) =
1

(tH)d
e
−

d2(x,y)

2t2H

( N
∑

i=0

ci(x, y)t
2iH +O(t2(N+1)H )

)

.
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1. INTRODUCTION

In this paper, we are interested in the study in small times ofstochastic differential equations on
R
d

(1.1) Xx
t = x+

d
∑

i=1

∫ t

0
Vi(X

x
s )dB

i
s

whereVi’s areC∞-bounded vector fields onRd andB is a d-dimensional fractional Brownian
motion with Hurst parameterH > 1/2. SinceH > 1/2, the integrals

∫ t
0 Vi(X

x
s )dB

i
s are under-

stood in the sense of Young’s integration (see [30] and [31]), and it is known (see by e.g. [27]) that
an equation like (1.1) has one and only one solution. Moreover if for every x ∈ R

d, the vectors
V1(x), · · · , Vd(x) form a basis ofRd, then this solution has for everyt > 0, a smooth density with
respect to the Lebesgue measure (see [5] and [28]).

Our main result is the following:

Theorem 1.1. Let us assume that:

• For everyx ∈ R
d, the vectorsV1(x), · · · , Vd(x) form a basis ofRd.

• There exist smooth and bounded functionsωl
ij such that:

[Vi, Vj ] =
d
∑

l=1

ωl
ijVl,

and
ωl
ij = −ωj

il.

Then, in a neighborhoodV of x, the density functionp(t;x, y) of Xx
t in (1.1) has the following

asymptotic expansion neart = 0

p(t;x, y) =
1

(tH)d
e
− d2(x,y)

2t2H

( N
∑

i=0

ci(x, y)t
2iH + rN+1(t, x, y)t

2(N+1)H

)

, y ∈ V.

Hered(x, y) is the Riemannian distance betweenx andy determined by the vector fieldsV1, ..., Vd.
Moreover, we can choseV such thatci(x, y) areC∞ in V ×V ⊂ R

d×R
d, and for all multi-indices

α andβ
sup
t≤t0

sup
(x,y)∈V ×V

|∂αx ∂
α
y ∂

k
t rN+1(t, x, y)| <∞

for somet0 > 0.

For H = 1/2, which corresponds to the Brownian motion case, the above theorem admits
numerous proofs. The first proofs were analytic and based on the parametrix method. Such meth-
ods do not apply in the present framework since the Markov property forXx

t is lost whenever
H > 1/2. However, in the seminal works [2] and [1], Azencott introduced probabilistic methods
to prove the result. These methods introduced by Azencott were then further developed by Ben
Arous and Léandre in [7], [8], [9] and [20], in order to coverthe case of hypoelliptic heat kernels.
Let us sketch the strategy of [8] which is based on the Laplacemethod on the Wiener space and
which is the one adopted in the present paper.



3

The first idea is to consider the scaled stochastic differential equation

dXε
t = ε

n
∑

i=1

Vi(X
ε
t )dB

i
t , withXε

0 = x0.

We observe that there exist neighborhoodsU and V of x0 and a bounded smooth function
F (x, y, z) onU × V ×R

n such that:
(1) For any(x, y) ∈ U × V the infimum

inf

{

F (x, y, z) +
d(x, z)2

2
, z ∈ R

n

}

= 0

is attained at the unique pointy.
(2) For each(x, y) ∈ U × V , there exists a ball centered aty with radiusr independent ofx, y

such thatF (x, y, ·) is a constant outside of the ball.
So, denoting bypε(x0, y) the density ofXε

1 , by the Fourier inversion formula we have

pε(x0, y)e
−

F (x0,y,y)

ε2 =
1

(2π)d

∫

e−iζ·ydζ

∫

eiζ·ze−
F (x0,y,z)

ε2 pε(x0, z)dz

=
1

(2πε)d

∫

dζE

(

e
iζ·(Xε

1−y)

ε e
F (x0,y,X

ε
1)

ε2

)

.

Thus, the asymptotics ofpt(x0, y) may be understood from the asymptotics whenε→ 0 of

Jε(x0, y) = E

(

e
iζ·(Xε

1−y)

ε e
F (x0,y,X

ε
1)

ε2

)

.

Then, by using the Laplace method on the Wiener space based onthe large deviation principle,
we get an expansion in powers ofε of Jε(x0, y) which leads to the expected asymptotics for the
density function.

In this work, we follows Ben Arous’ approach and show how it may be extended to encompass
the fractional Brownian motion case.

The rest of this paper is organized as follows. In a preliminary section we remind some known
facts about fractional Brownian motion and equations driven by it. In the second section we show
how the Laplace method may be carried out in the fractional Brownian motion case and finally
in the third section which is the heart of the present paper, we prove Theorem 1.1. We move the
proofs of some technical lemmas to the Appendix.

Remark 1.2. Under the framework of this present work, the Laplace methodcan be obtained in
general hypoelliptic case and without imposing the structure equations on vector fields in Theorem
1.1. These two assumptions are imposed to obtain the correctRiemannian distance in the kernel
expansion.

Remark 1.3. WhenH > 1/2, to obtain a short-time asymptotic formula for the density of solution
to equation (1.1) but with drift, one need to work on a versionof Laplace method with fractional
powers ofε, which will be very heavy and tedious in computation.

Remark 1.4. When the present work was almost completed, we noticed that aproof for the Laplace
method for stochastic differential equation driven by fractional Brownian motion with Hurst pa-
rameter1/3 < H < 1/2 became available by Y. Inahama[18] on mathematics Arxiv.



4 FABRICE BAUDOIN AND CHENG OUYANG

2. PRELIMINARIES

2.1. Stochastic differential equations driven by fractional Brownian motions. We consider
the Wiener space of continuous paths:

W
⊗d =

(

C([0, T ],Rd), (Bt)0≤t≤T ,P
)

where:

(1) C([0, T ],Rd) is the space of continuous functions[0, T ] → R
d;

(2) (βt)t≥0 is the coordinate process defined byβt(f) = f (t), f ∈ C([0, T ],Rd);
(3) P is the Wiener measure;
(4) (Bt)0≤t≤T is the (P-completed) natural filtration of(βt)0≤t≤T .

A d-dimensional fractional Brownian motion with Hurst parameterH ∈ (0, 1) is a Gaussian pro-
cess

Bt = (B1
t , . . . , B

d
t ), t ≥ 0,

whereB1, . . . , Bd ared independent centred Gaussian processes with covariance function

R (t, s) =
1

2

(

s2H + t2H − |t− s|2H
)

.

It can be shown that such a process admits a continuous version whose paths are Hölderp contin-
uous,p < H. Throughout this paper, we will always consider the ‘regular’ case,H > 1/2. In
this case the fractional Brownian motion can be constructedon the Wiener space by a Volterra type
representation (see [12]). Namely, under the Wiener measure, the process

(2.1) Bt =

∫ t

0
KH(t, s)dβs, t ≥ 0

is a fractional Brownian motion with Hurst parameterH, where

KH(t, s) = cHs
1
2
−H

∫ t

s
(u− s)H− 3

2uH− 1
2du , t > s.

andcH is a suitable constant.
Denote byE the set of step functions on[0, T ]. LetH be the Hilbert space defined as the closure

of E with respect to the scalar product

〈1[0,t],1[0,s]〉H = RH(t, s).

The isometryK∗
H from H toL2([0, T ]) is given by

(K∗
Hϕ)(s) =

∫ T

s
ϕ(t)

∂KH

∂t
(t, s)dt.

Moreover, for anyϕ ∈ L2([0, T ]) we have
∫ T

0
ϕ(s)dBs =

∫ T

0
(K∗

Hϕ)(s)dβs.

We consider the following stochastic differential equation

(2.2) Xx
t = x+

∫ t

0
V0(X

x
s )ds +

d
∑

i=1

∫ t

0
Vi(X

x
s )dB

i
s
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where theVi’s areC∞ vector fields onRd with bounded derivatives to any order andB is the
d-dimensional fractional Brownian motion defined by (2.1). Existence and uniqueness of solutions
for such equations have widely been studied and are known to hold in this framework.

2.1.1. Pathwise estimates.Let 1/2 < λ < H and denote byCλ(0, T ;Rd) the space ofλ-Hölder
continuous functions equipped with the norm

‖f‖λ,T := ‖f‖∞ + sup
0≤s<t≤T

|f(t)− f(s)|

(t− s)λ
,

where‖f‖∞ := supt∈[0,T ] |f(t)|.
The following remarks will be useful later.

Remark 2.1.
1. It is clear that iff1, f2 ∈ Cλ, thenf1f2 ∈ Cλ with ‖f1f2‖λ,t ≤ ‖f1‖λ,t‖f2‖λ,t. Therefore,
polynomials of elements inCλ are still in Cλ. It is also clear that wheneverϕ is a Lipschitz
function andf ∈ Cλ, we haveϕ(f) ∈ Cλ.
2. Letf ∈ Cλ(0, T ;Rd) andg : [0, T ] → Mn×d be a matrix-valued function and supposeg ∈ Cλ.
By standard argument (see Terry Lyons[23] for instance),

∫ .

0
gs dfs ∈ Cλ(0, T ;Rn)

with
∥

∥

∥

∥

∫ .

0
gs dfs

∥

∥

∥

∥

λ,T

≤ C‖g‖λ,T ‖f‖λ,T .

In the aboveC is a constant only depending onλ andT .

Lemma 2.2. (Hu-Nualart, [16]) Consider the stochastic differential equation (1.1), andassume
thatE(|X0|

p) < ∞ for all p ≥ 2. If the derivatives ofVi’s are bounded and Ḧolder continuous of
orderλ > 1/H − 1, then

E

(

sup
0≤t≤T

|Xt|
p

)

<∞

for all p ≥ 2. If furthermoreVi’s are bounded andE(exp(λ|X0|
q)) < ∞ for any λ > 0 and

q < 2H, then

E

(

expλ

(

sup
0≤t≤T

|Xt|
q

))

<∞

for anyλ > 0 andq < 2H.

2.2. Cameron-Martin theorem for fBm. Consider the classical Cameron-Martin spaceH =
{h ∈ Po(R

d) : ‖h‖H <∞}, where

‖h‖H =

(
∫ T

0
|ḣs|

2ds

)

1
2

.

The Cameron-Martin space for the fractional Brownian motionB is

HH = KH(H ),
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where the mapKH : H → HH is given by

(KHh)t =

∫ t

0
KH(t, s)ḣsds, for all h ∈ H .

The inner product onHH is defined by

〈k1, k2〉HH
= 〈h1, h2〉H , ki = KHhi, i = 1, 2.

HenceKH is an isometry betweenH andHH .

Remark 2.3. It can be shown that whenγ ∈ HH , γ isH-Hölder continuous.

The following Cameron-Martin theorem is known (see [12]).

Theorem 2.4 (Cameron-Martin theorem for fBm). Let Bk = B + k be the shifted fractional
Brownian motion, wherek ∈ HH is a Cameron-Martin path. The lawPk

H ofBk and the lawPH

ofB are mutually absolutely continuous. Furthermore, the Radon-Nikodym derivative is given by

dPk
H

dPH
= exp

[

−

∫ T

0
(K∗

H)−1(ḣ)sdBs −
1

2
‖k‖2HH

]

,

In the above,h = (KH)−1k and the integral againstB is understood as Young’s integral.

2.3. Large deviation principle for fBm. The following large deviation principle for stochastic
differential equation driven by fractional Brownian motion is a special case of Proposition 19.14
in Friz-Victoir[14] (see also [25]).

Proposition 2.5. Fix λ ∈ (1/2,H). LetXε be the solution to the following stochastic differential
equations driven by fBmB

Xε
t = x0 +

∫ t

0
V0(Xs)ds+

d
∑

i=1

ε

∫ t

0
Vi(Xs)dB

i
s(2.3)

whereVi’s are C∞ vector fields onRd with bounded derivatives to any order. The processXε

satisfies a large deviation principle, inλ-Hölder topology, with good rate function given by

Λ(φ) = inf{Λ̄(γ) : φ = I(γ)}

whereI is the It̂o map given by (2.3) withε being replaced by1, andΛ̄ is given by

Λ̄(γ) =







1
2‖γ‖

2
HH

if γ ∈ HH ,

+∞ otherwise.

3. LAPLACE METHOD

Consider the following stochastic differential equation driven by fractional Brownian motion on
R
d:

Xε
t = x0 +

∫ t

0
V0(Xs)ds +

d
∑

i=1

ε

∫ t

0
Vi(Xs)dB

i
s.
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For the convenience of our discussion, in what follows, we write the above equation in the follow-
ing form

Xε
t = x+ ε

∫ t

0
σ(Xε

s )dBs +

∫ t

0
b(ε,Xε

s )ds,

whereσ is a smoothd× d matrix andb a smooth function fromR+ × R
d to R

d. We also assume
thatσ andb have bounded derivatives to any order.

LetF andf be two smooth functionals with smooth derivatives to any order. We are interested
in studying the asymptotic behavior of

J(ε) = E
[

f(Xε) exp{−F (Xε)/ε2}
]

asε ↓ 0. Indeed, the following theorem is the main result of this section.

Theorem 3.1. Under the assumption H 1 and H 2 below, we have

J(ε) = e−
a

ε2 e−
c
ε

(

α0 + α1ε+ ...+ αNε
N +O(εN+1)

)

.

Here
a = inf{F +Λ(φ), φ ∈ P (Rd)} = inf{F ◦ Φ(k) + 1/2|k|2HH

, k ∈ HH}

and
c = inf

{

dF (φi)Yi, i ∈ {1, 2, ..., n}
}

,

whereYi is the solution of

dYi(s) = ∂xσ(φi(s))Yi(s)dγi(s) + ∂εb(0, φi(s))ds+ ∂xb(0, φi(s))Yi(s)ds

with Yi(0) = 0.

For eachk ∈ HH , denote byΦ(k) the solution to the following deterministic differential equa-
tion

dut = σ(ut)dkt + b(0, ut)dt, with u0 = x.(3.1)

Lemma 3.2. LetΦ be defined as above, we have

Λ(φ) = inf

{

1

2
‖k‖2HH

, φ = Φ(k), k ∈ HH

}

.

Moreover, ifΛ(φ) < ∞, there exists a uniquek ∈ HH such thatΦ(k) = φ and Λ(φ) =
1/2‖k‖2

HH
.

Proof. The first statement is apparent. For the second statement, weonly need to notice that if

φ = Φ(k1) = Φ(k2), k1, k1 ∈ HH ,

then
∫ t

0
σ(φs)d(k1 − k2)s = 0, t ∈ [0, T ],

which implies thatk1 = k2, since we assume that columbs ofσ are linearly independent. The
proof is therefore completed. �

Throughout our discussion we make the following assumptions:
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Assumption 3.3.

• H 1: F + Λ attains its minimum at finite number of pathsφ1, φ2, ..., φn onP (Rd).

• H 2: For eachi ∈ {1, 2, ..., n}, we haveφi = Φ(γi) andγi is a non-degenerate minimum
of the functionalF ◦Φ+ 1/2‖ · ‖2

HH
, i.e.:

∀k ∈ HH − {0}, d2(F ◦ Φ+ 1/2‖ · ‖2HH
)(γi)k

2 > 0.

Lemma 3.4. Under assumption H 1, we have

a
def
= inf{F + Λ(φ), φ ∈ P (Rd)} = inf

{

F ◦ Φ(k) +
1

2
‖k‖2HH

, k ∈ HH

}

,

and the minimum is attained atn pathsγ1, γ2, ..., γn ∈ HH such that

Φ(γi) = φi

and
1

2
‖γi‖

2
HH

= Λ(Φ(γi)).

Proof. This is a direct corollary of Lemma 3.2. �

Assumption H 2 has a simple interpretation as follows. Letγ be one of theγi’s above. Define a
bounded self-adjoint operator onH by

d2F ◦ Φ(γ)(KHh
1,KHh

2) = (Ah1, h2)H , for h1, h2 ∈ H .

Lemma 3.5. The bounded self-adjoint operatorA is Hilbert-Schmidt.

Proof. The proof is similar to that in Ben Arous[7] but with slight modification. Thus we only
sketch the proof here . In what follows,k always denotes an element inHH andh = K−1

H k its
corresponding element inH .

For anyk1, k2 ∈ HH , we have

d2F ◦Φ(γ)(KHh
1,KHh

2) = d2F ◦Φ(γ)(k1, k2)

= d2F (dΦ(γ)k1, dΦ(γ)k2) + dF (φ)(d2Φ(γ)(k1, k2)).

Let
φ = Φ(γ) and χ(k) = dΦ(γ)k.

It can be shown (cf. Ben Arous[7]),

dφt = σ(φt)dγt + b(0, φt)dt, with φ0 = x,

dχt = σ(φt)dkt + ∂xσ(φt)χtdγt + ∂xb(0, φt)χtdt, with χ0 = 0,

and

d2Φ(γ)(k1, k2)(t) =

∫ 1

0
Q(t, s)∂xσ(φs)

(

χ(k1)sdk
2
s + χ(k2)sdk

1
s

)

+

∫ t

0
∂2xxσ(φs)

(

χ(k1)s, χ(k
2)s
)

dγs +

∫ t

0
∂2xxb(0, φs)

(

χ(k1)s, χ(k
2)s
)

ds.
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HereQ(t, s) takes the form

Q(t, s) = ∂xφt(x)∂xφs(x)
−1.

Moreover, we have

χt(k) =

∫ t

0
Q(t, s)σ(φs)dks(3.2)

=

∫ t

0

(
∫ t

u
Q(t, s)σ(φs)

∂KH(s, u)

∂s
ds

)

ḣudu

Set

V (h1, h2)(t) =

∫ t

0
Q(t, s)∂xσ(φs)

(

χ(KHh
1)sd(KHh

2)s + χ(KHh
2)sd(KHh

1)s
)

(3.3)

=

∫ t

0
Q(t, s)∂xσ(φs)

(

χ(k1)sdk
2
s + χ(k2)sdk

1
s

)

=

∫ t

0

∫ t

u
Q(t, s)∂xσ(φs)

∂KH (s, u)

∂s

(

χ(k1)sh
2
u + χ(k2)sh

1
u

)

dsdu.

Define a bounded self-adjoint operatorÃ from H to H by

dF (φ)(V (h1, h2)) = (Ãh1, h2)H

We conclude that̃A is Hilbert-Schmidt since, by (3.2) and (3.3), it is defined from aL2 kernel.
Therefore, to complete the proof, it suffices to show thatA − Ã is Hilber-Schmidt. By the same
argument as in Ben Arous[7], we only need to show

‖dΦ(γ)KHh‖∞ = ‖χ(KHh)‖∞ ≤ C‖h‖∞, for all h ∈ H .

Indeed, by an easy application of Gronwall inequality to theequation forχ, we have

‖dΦ(γ)(KHh)‖∞ ≤ ‖KHh‖∞.

Moreover, since

(KHh)t =

∫ t

0
KH(t, s)ḣsds,

and note∂KH(t, s)/∂s ∈ L1,we have

|KHh|t ≤

∣

∣

∣

∣

∫ t

0
KH(t, s)ḣsds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0
hs
∂KH(t, s)

∂s
ds

∣

∣

∣

∣

≤ ‖h‖∞

∫ t

0

∣

∣

∣

∣

∂KH(t, s)

∂s

∣

∣

∣

∣

ds,

The proof is completed.
�

From the above lemma, assumption H 2 simply means that the smallest eigenvalue ofA is
attained and is strictly greater that−1.
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3.1. Localization around the minimum. By the large deviation principle, the sample paths that
has contribution to the asymptotics ofJ(ε) lie in the neighborhoods of the minimizers ofF + Λ.
More precisely,

Lemma 3.6. For ρ > 0, denote byB(φi, ρ) the open ball (underλ-Hölder topology) centered at
φi with radiusρ. There existd > a andε0 > 0 such that for allε ≤ ε0

∣

∣

∣

∣

∣

∣

J(ε) − E



f(Xε
T )e

−F (Xε
T
)/ε2 ,Xε ∈

⋃

1≤i≤n

B(φi, ρ)





∣

∣

∣

∣

∣

∣

≤ e−d/ε2 .

Proof. This is a consequence of the large deviation principle. �

Assume thatn = 1, i.e.,F + Λ attains its minimum at only one pathφ. Let

Jρ(ε) = E

[

f(Xε
T )e

−F (Xε
T
)/ε2 ,Xε ∈ B(φ, ρ)

]

.

The above lemma tells us that to study the asymptotic behavior of J(ε) asε ↓ 0, it is suffice to
study that ofJρ(ε).

3.2. Stochastic Taylor expansion and Laplace approximation. In this section, we prove an
asymptotic expansion forJρ(ε).

Let φ be the unique path that minimizesF + Λ. There exists aγ ∈ HH such that

φ = Φ(γ), and Λ(φ) =
1

2
‖γ‖2HH

,

and for allk ∈ HH − {0}:

d2(F ◦ Φ+
1

2
‖ ‖2HH

)(γ)k2 > 0.

Let
χ(k) = dΦ(γ)k and ψ(k, k) = d2Φ(γ)(k, k).

We have

dχt = σ(φt)dkt + ∂xσ(φt)χtdγt + ∂xb(0, φt)χtdt,(3.4)

and

dψt =2∂xσ(φt)χtdkt + ∂2xxσ(φt)χ
2
t dγt + ∂xσ(φt)ψtdγt(3.5)

+ ∂2xxb(0, φt)χ
2
tdt+ ∂xb(0, φt)ψtdt.

Hereχ0 = φ0 = 0. These formula will be useful later.
Consider the following stochastic differential equation

Zε
t = x+

∫ t

0
σ(Zε

s )(εdBs + dγs) +

∫ t

0
b(ε, Zε

s )ds.

It is clear thatZ0 = φ. DenoteZm,ε
t = ∂mε Z

ε
t and consider the Taylor expansion with respect toε

nearε = 0, we obtain

Zε = φ+

N
∑

j=0

gjε
j

j!
+ εN+1Rε

N+1,
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wheregj = Zj,0. Explicitly, we have

dg1(s) = σ(φs)dBs + ∂xσ(φs)g1(s)dγs + ∂xb(0, φs)g1(s)ds+ ∂εb(0, φs)ds.

Similar to the Brownian motion case, we have the following estimates, the proof of which is
postponed to Appendix.

Lemma 3.7. For any t ∈ [0, T ], there exists a constantC > 0 such that forr large enough we
have

P{‖g1‖λ,t ≥ r} ≤ exp

{

−
Cr2

t2H

}

P{‖g2‖λ,t ≥ r} ≤ exp

{

−
Cr

t2H

}

.

and

P{‖εRε
1‖λ,t ≥ r; t ≤ T ε} ≤ ρ

P{‖εRε
2‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr2

ρt2H

}

P{‖εRε
3‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr

ρt2H

}

,

HereT ε is the first exist time ofZε fromB(φ, ρ).

Let θ(ε) = F (Zε
T ). By Taylor expansion ofθ(ε) with respect toε, we obtain

θ(ε) = θ(0) + εθ′(0) + ε2U(ε).

Here

U(ε) =

∫ 1

0
(1− v)θ′′(εv)dv, and θ(0) = F (φ).

Lemma 3.8. With the above notation, we have

θ′(0) = dF (φ)g1 = −

∫ T

0

(

(K∗
H)−1 ˙(K−1

H γ)
)

s
dBs + dF (φ)Y.

HereY is the solution of

dYs = ∂xσ(φs)Ysdγs + ∂εb(0, φs)ds + ∂xb(0, φs)Ysds, Y (0) = 0.

Proof. By an easy application of the Gronwall’s inequality to (3.4), we have for anyk ∈ HH ,

‖dΦ(γ)k‖∞ ≤ C‖k‖∞(3.6)

for some positive constantC. Therefore,dΦ(γ) can be extended continuously to an operator on
P (Rd). We have

g1 = dΦ(γ)B + Y.
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On the other hand, sinceγ is a critical point ofF ◦Φ+1/2‖ ·‖2
HH

and note‖k‖HH
= ‖K−1

H k‖H ,
we have

dF (φ)(dΦ(γ)k) = −

∫ T

0

˙(K−1
H γ)s

˙(K−1
H k)sds(3.7)

= −

∫ T

0

(

(K∗
H)−1 ˙(K−1

H γ)
)

s
dks

for all k ∈ HH . The second equation above can be seen as follows. Denote by

h = K−1
H k.

We have
∫ T

0

(

(K∗
H)−1 ˙(K−1

H γ)
)

s
dks =

∫ T

0

(

(K∗
H)−1 ˙(K−1

H γ)
)

s

∫ s

0

∂KH

∂s
(s, u)ḣududs

=

∫ T

0
ḣu

∫ T

u

(

(K∗
H)−1 ˙(K−1

H γ)
)

s

∂KH

∂s
(s, u)ds

=

∫ T

0
ḣu

˙(K−1
H γ)udu

=

∫ T

0

˙(K−1
H γ)s

˙(K−1
H k)sds.

From (3.6) and (3.7) we conclude that the path(K∗
H)−1 ˙(K−1

H γ) has bounded variation and
hence, by passing to limit, we obtain

dF (φ)(dΦ(γ)B) = −

∫ T

0

(

(K∗
H)−1 ˙(K−1

H γ)
)

s
dBs.

The proof is completed.
�

Now, by Theorem 2.4 we have

Jρ(ε)

=E

[

f(Zε) exp

(

−
F (Zε)

ε2

)

exp

(

−
1

ε

∫ T

0

(

(K∗
H)−1( ˙K−1

H γ)
)

s
dBs −

‖γ‖2
HH

2ε2

)

;Zε ∈ B(φ, ρ)

]

=E
[

V (ε);Zε ∈ B(φ, ρ)
]

exp

[

−
1

ε2

(

F (φ) +
1

2
‖γ‖2HH

)]

exp

[

−
dF (φ)Y

ε

]

=E
[

V (ε);ZεB(φ, ρ)
]

exp
[

−
a

ε2

]

exp

[

−
dF (φ)Y

ε

]

.

In the above

V (ε) = f(Zε)e−U(ε).

To prove the Laplace approximation, it now suffices to estimate E
[

V (ε);Zε ∈ B(φ, ρ)
]

. For
this purpose, we need the following two technical lemmas.
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Lemma 3.9. Let

θ(ε) = F (Zε) = θ(0) + εθ′(0) + ε2U(ε)

where

U(ε) =

∫ 1

0
(1− v)θ′′(εv)dv, and θ(0) = F (φ).

There existβ > 0 andε0 > 0 such that

sup
0≤ε≤ε0

E

(

e−(1+β)U(ε); t ≤ T ε
)

<∞.

Proof. See Appendix. �

Lemma 3.10. For all m > 0 andp ≥ 2, there exists anε0 > 0 such that

sup
ε≤ε0

E

(

sup
t∈[0,1]

|∂mε Z
ε
t |

p

)

<∞.

Proof. This is a consequence of Lemma 2.2. �

DenoteV (m)(ε) = ∂mε V (ε). By Lemma 3.9 and Lemma 3.10, one can show

E|V (m)(0)|p <∞, for all p > 1,m > 0.

Consider the stochastic Taylor expansion forV (ε)

V (ε) =

N
∑

m=0

εmV (m)(0)

m!
+ εN+1Sε

N+1

where

Sε
N+1 =

∫ 1

0

V (N+1)(εv)(1 − v)N

N !
dv.

It can be shown, again by Lemma 3.9 and Lemma 3.10 (cf, Ben Arous[7]),

sup
0≤ε≤ε0

E
[

|Sε
N+1|;Z

ε ∈ B(φ), ρ)
]

<∞.

Thus we conclude that

E
[

V (ε);Zε ∈ B(φ, ρ)
]

=
N
∑

m=0

αmε
m +O(εN+1).

Moreover, one can show

αm =
EV (m)(0)

m!
.
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4. SHORT-TIME EXPANSION FOR TRANSITION DENSITY

We now arrive to the heart of our study and are interested in obtaining a short-time expansion
for the density function ofXt, where

dXt =
d
∑

i=1

Vi(Xt)dB
i
t , X0 = x(4.1)

HereVi’s areC∞ vector fields onRd with bounded derivatives to any order. Throughout this
section, we shall also make the following assumption on the vector fieldsVi’s.

Assumption 4.1.
• For everyx ∈ R

d, the vectorsV1(x), · · · , Vd(x) form a basis ofRd.
• There exist smooth and bounded functionsωl

ij such that:

[Vi, Vj ] =

d
∑

l=1

ωl
ijVl,

and
ωl
ij = −ωj

il.

The first assumption means that the vector fields form an elliptic differential system. As a conse-
quence of Baudoin and Hairer[5], it is known that the law ofXt, t > 0, admits therefore a smooth
densityp(t;x, y) with respect to Lebesgue measure. The second assumption is of geometric nature
and actually means that the Levi-Civita connection associated with the Riemannian structure given
by the vector fieldsVi’s is

∇XY =
1

2
[X,Y ].

In a Lie group structure, this is equivalent to the fact that the Lie algebra is of compact type. We
will see the use of this assumption in a section below.

The following theorem is the main result of our paper.

Theorem 4.2. Fix x ∈ R
d. Assume that the assumption 4.1 is satisfied, then in a neighborhood

V of x, the density functionp(t;x, y) of Xt in (4.1) has the following asymptotic expansion near
t = 0

p(t;x, y) =
1

(tH)d
e
− d2(x,y)

2t2H

( N
∑

i=0

ci(x, y)t
2iH + rN+1(t, x, y)t

2nH

)

, y ∈ V.

Hered(x, y) is the Riemannian distance betweenx andy determined byV1, ..., Vd. Moreover, we
can choseV such thatci(x, y) areC∞ in V × V ⊂ R

d × R
d, and for all multi-indicesα andβ

sup
t≤t0

sup
(x,y)∈V ×V

|∂αx ∂
α
y ∂

k
t rN+1(t, x, y)| <∞

for somet0 > 0.

Once the Laplace approximation in the previous section is obtained, the proof of the above
theorem is actually quite standard and follows closely the argument given, for instance, in Ben
Arous[8]. Thus, for most of the lemmas in what follows, we only outline the proofs but stress the
main differences with Brownian motion case.
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4.1. Preliminaries in differential geometry. The vector fieldsV1, V2, ..., Vd on R
d determine a

natural Riemannian metricg = (gij) onRd under whichV1(x), V2(x), ..., Vd(x) form an orthonor-
mal frame at each pointx ∈ R

d. More explicitly, letσ be thed× d matrix formed by

σ(x) = (V1(x), V2(x), ..., Vd(x)).

Denote byΓ the inverse matrix ofσσ∗. Then the Riemannian metricg is given by

gij = Γij , 1 ≤ i, j ≤ d.

Throughout our discussion, we denote byM the Riemannian manifoldRd equipped with the metric
g specified above. The Riemannian distance between any two points x, y on M is denoted by
d(x, y). We recall that

d(x, y) = inf
γ∈C(x,y)

∫ 1

0

√

gγ(s)(γ′(s), γ′(s))ds

whereγ ∈ C(x, y) denotes the set of absolutely continuous curvesγ : [0, 1] → R
d, such that

γ(0) = x, γ(1) = y.
More analytically, this distance may also be defined as

d(x, y) = sup{f(x)− f(y), f ∈ C∞
b (Rd),

d
∑

i=1

(Vif)
2 ≤ 1},

whereC∞
b (Rd) denotes the set of smooth and bounded functions onR

d. Since the vector fields
V1, · · · , Vd are Lipschitz it is well-known that this distance is complete and that the Hopf-Rinow
theorem holds (that is closed balls are compact).

Due to the second assumption 4.1, the geodesics are easily described. Ifk : R≥0 → R is a
α-Hölder path withα > 1/2 such thatk(0) = 0, we denote byΦ(x, k) the solution of the ordinary
differential equation:

xt = x+

d
∑

i=1

∫ t

0
Vi(xs)dk

i
s.

Whenever there is no confusion, we always suppress the starting pointx and denote it simply by
Φ(k) as before.

Lemma 4.3. Φ(x, k) is a geodesic if and only ifk(t) = tu for someu ∈ R
d.

Proof. It is well-known that geodesicsc are smooth and solutions of the equation

∇c′c
′ = 0,

where∇ is the Levi-Civita connection. Therefore, in orderΦ(k) to be a geodesic, we first see that
k needs to be smooth and then that

∇∑d
i=1 Vi(xs)k̇is

d
∑

i=1

Vi(xs)k̇
i
s = 0.

Now, due to the structure equations

[Vi, Vj ] =
d
∑

l=1

ωl
ijVl,
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the Christoffel’s symbols of the connection are given by

Γl
ij =

1

2

(

ωl
ij + ωj

li + ωi
lj

)

=
1

2
ωl
ij .

So the equation of geodesics may be rewritten
d
∑

l=1

d2kls
ds2

Vl(xs) +

d
∑

i,j,l=1

ωl
ij k̇

i
sk̇

j
sVl(xs) = 0.

Due to the skew-symmetryωl
ij = −ωl

ji we get

d2kls
ds2

= 0,

which leads to the expected result. �

As a consequence of the previous lemma, we then have the following key result:

Proposition 4.4. LetT > 0. For x, y ∈ R
d,

inf
k∈HH ,ΦT (x,k)=y

‖k‖2HH
=
d2(x, y)

T 2H
.

Proof. In a first step we prove

d2(x, y)

T 2H
≤ inf

k∈HH ,ΦT (x,k)=y
‖k‖2HH

.

Let k ∈ HH such thatΦ0(k) = x,ΦT (k) = y. Denote byz the solution of the equation

dzt =

d
∑

i=1

Vi(zt)dk
i
t, 0 ≤ t ≤ T.

We have therefore:
z0 = x, zT = y.

Let nowf ∈ C∞
b (Rd) such that

∑d
i=1(Vif)

2 ≤ 1 . By the change of variable formula, we get

f(y)− f(x) =
d
∑

i=1

∫ T

0
Vif(zt)dk

i
t.

Sincek ∈ HH , we can findh in the Cameron-Martin space of the Brownian motion such that

kt =

∫ t

0
KH(t, s)ḣsds.

Integrating by parts, we have then
∫ T

0
Vif(zt)dk

i
t =

∫ T

0

(∫ T

s

∂KH

∂t
(t, s)Vif(zt)dt

)

ḣisds.

Therefore from Cauchy-Schwarz inequality, the isometry betweenH andHH and the fact that
∑d

i=1(Vif)
2 ≤ 1, we deduce that

(f(y)− f(x))2 ≤ R(T, T )‖ḣ‖2L2([0,1]) = T 2H‖k‖2HH
.
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Thus
d2(x, y)

T 2H
≤ inf

k∈HH ,ΦT (x,k)=y
‖k‖2HH

.

We now prove the converse inequality.
We first assume thaty is close enough tox so that there exist(y1, · · · , yd) ∈ R

d that satisfy

y = exp

(

d
∑

i=1

yiVi

)

(x).

Let

kit =

∫ t
0 KH(t, s)KH(T, s)ds

T 2H
yi =

R(t, T )

T 2H
yi.

In that case, it is easily seen that

Φ(k)(t) = exp

(

d
∑

i=1

R(t, T )

T 2H
yiVi

)

(x).

In particular,

Φ0(k) = x,Φ1(k) = y.

Moreover,

‖k‖2HH
=

∑d
i=1 y

2
i

T 2H
=
d2(x, y)

T 2H
.

As a consequence

inf
k∈HH ,ΦT (x,k)=y

‖k‖2HH
≤
d2(x, y)

T 2H
.

If y is not close tox, we just have to pick a sequencex0 = x, · · · , xm = y such that

d(xi, xi+1) ≤ ε

and

d(x, y) =

m−1
∑

i=0

d(xi, xi+1),

whereε is small enough. �

The second keypoint is the following

Theorem 4.5. Fix x0 ∈ M . LetF be aC∞ function onM . There exists a neighborhoodV of x0
such that ify0 ∈ V is a non-degenerate minimum of

F (y) +
d2(x0, y)

2
,

then there exists a uniquek0 ∈ HH such that (a):Φ1(x0, k0) = y0; (b): d(x0, y0) = ‖k0‖HH
;

and (c): k0 is a non-degenerate minimum of the functional:k → F (Φ1(x0, k)) + 1/2‖k‖2
HH

on
HH .
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Proof. The first two statements are clear from Proposition 4.4. We only need to prove (c). To
simplify notation, let

G(k) = F (Φ1(x0, k)) +
1

2
‖k‖2HH

.

Consider

u(t) = G(k0 + tk),

and

v(t) = F (Φ1(x0, k0 + tk)) +
1

2
d2(x0,Φ1(x0, k0 + tk)).

It is clear that

u(t) ≥ v(t), u(0) = v(0) and u′(0) = v′(0) = 0.

Thus

d2G(k0)k
2 = u′′(0) ≥ v′′(0) =

(

F +
1

2
d(x0, ·)

2

)′′

(y0) (dΦ1(k0)k)
2 .

Whenk /∈ Ker(dΦ1(x0, k0)), we surely have

d2G(k0)k
2 > 0.

In the casek ∈ Ker(dΦ1(x0, k0)), we have

d2G(k0)k
2 > 0, when y0 = x0.(4.2)

To see this, first note that sincek ∈ Ker(dΦ1(k0, x0)) we can chose a family of path{zt ∈
C([0, 1];Rd); t ∈ [0, 1]} such thatzt0 = zt1 = z0s = 0 for all (t, s) ∈ [0, 1] × [0, 1], and

dzt

dt

∣

∣

∣

∣

t=0

= dΦ(x0, k0)k.

Moreover, we havezt = Φ(0, kt) for a family of pathkt ∈ HH . Therefore

d2G(k0)k
2 =

d2

dt2

∣

∣

∣

∣

t=0

(

F (x0 + zt1) +
1

2
‖kt‖2HH

)

=

∫ 1

0

˙[

K−1
H

(

d

dt

∣

∣

∣

∣

t=0

kt
)]2

s

ds.

This shows that ifd2G(k0)k2 = 0 thenk = 0, which proves (4.2). Now the lemma follows by a
continuity argument. �

Remark 4.6. In the above lemma, it is clear that we can choose the neighborhoodV of x0 such
that for anyx ∈ V , if y ∈ V is a non-degenerate minimum ofF (y) + d(x, y)2/2, then the three
properties in the lemma are fulfilled.

4.2. Asymptotics of the density function. Consider

dXε
t = ε

d
∑

i=1

Vi(X
ε
t )dB

i
t with Xε

0 = x.

Before applying the Laplace approximation toXε
t , we need the following lemma which gives us

the correct functionalsF andf .
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Lemma 4.7. Let V be in Remark 4.6. There exists a bounded smooth functionF (x, y, z) on
V × V ×M such that:

(1) For any(x, y) ∈ V × V the infimum

inf

{

F (x, y, z) +
d(x, z)2

2
, z ∈M

}

= 0

is attained at the unique pointy. More over, it is a non-degenerate minimum.
(2) For each(x, y) ∈ V × V , there exists a ball centered aty with radiusr independent ofx, y

such thatF (x, y, ·) is a constant outside of the ball.

Proof. See Lemma 3.8 in Ben Arous[8]. �

Let F be in the above lemma andpε(x, y) the density function ofXε
1 . By the inversion of

Fourier transformation we have

pε(x, y)e
−F (x,y,y)

ε2 =
1

(2π)d

∫

e−iζ·ydζ

∫

eiζ·ze−
F (x,y,z)

ε2 pε(x, z)dz

=
1

(2πε)d

∫

e−i ζ·y
ε dζ

∫

ei
ζ·z

ε e−
F (x,y,z)

ε2 pε(x, z)dz

=
1

(2πε)d

∫

dζEx

(

e
iζ·(Xε

1−y)

ε e
F (x,y,Xε

1)

ε2

)

.

It is clear that by applying Laplace approximation to the expectation in the last equation above
and switching the order of integration (with respect toζ) and summation, we obtain an asymptotic
expansion for the the density functionpε(x, y). On the other hand, we cannot apply the Laplace
method here directly since we need a uniform control inx andy. Also we need to show that the
use of Fourier inversion is legitimate.

To make the above prior computation rigorous, we modify the Laplace method in the previous
section as follows.

First note that by Lemma 4.5, Assumption 3.3 is satisfied. Consider

dZε
t (x, y) =

d
∑

i=1

Vi
(

Zε
t (x, y)

)(

εdBi
t + dγit(x, y)

)

, with Zε
0(x, y) = x.

In the above(x, y) ∈ V × V andγ(x, y) is the unique path inHH such thatΦ1(x, γ(x, y)) = y
and‖γ(x, y)‖HH

= d(x, y).

Lemma 4.8. LetZε
t (x, y) be the process defined above, thenZε

t (x, y) isC∞ in (ε, x, y). Moreover,
there exists anε0 > 0 such that

sup
ε≤ε0

sup
x,y∈V×V

n
∑

j=0

E

(

sup
t∈[0,1]

‖Dj(∂αx ∂
β
y ∂

m
ε Z

ε
t (x, y))‖

p
HS

)

<∞.

Herem,n are non-negative integers,p ≥ 2 andα ∈ {1, 2, ..., d}k , β ∈ {1, 2, ..., d}l are multiple
indices.

Proof. The first statement is clear. The second statement is a consequence of Lemma 2.2 �
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Now consider the stochastic Taylor expansion forZε

Zε
t = φt(x, y) +

N
∑

j=1

gkt (x, y)ε
k

k!
+RN+1

t (ε, x, y)εN+1.(4.3)

Here
φ(x, y) = Φ(x, γ(x, y)),

and

RN+1
t (ε, x, y) =

∫ 1

0
∂N+1
ε Zε

t (x, y)
(1− v)N

N !
dv.

Let
θ(ε, x, y) = F (x, y, Zε

1(x, y)).

We have
θ(ε, x, y) = θ(0, x, y) + ε∂εθ(0, x, y) + ε2U(ε, x, y).

where

U(ε, x, y) =

∫ 1

0
∂2εθ(ε, x, y)(1 − v)dv.

By our choice ofZε, it is clear

θ(0, x, y) = F (x, y, φ1(x, y)) = F (x, y, y).(4.4)

Lemma 3.8 gives us

∂εθ(0, x, y) = −

∫ 1

0
(K∗

H)−1 ˙(K−1
H γ(x, y))sdBs.(4.5)

Thus applying Cameron-Martin theorem for fBm (Theorem 2.4), we have

Ex exp

(

iζ · (Xε
1 − y)

ε
−
F (x, y,Xε

1)

ε2

)

=E

[

exp

(

iζ · (Zε
1 − y)

ε
−
F (x, y, Zε

1)

ε2

)

exp

(

−
1

ε

∫ 1

0

(

(K∗
H)−1( ˙K−1

H γ)
)

s
dBs −

‖γ‖2
HH

2ε2

)]

=exp
[

−
a

ε2

]

Ex

[

exp

(

iζ · g11(x, y)

)

exp

(

iζ · V (ε, x, y)− U(ε, x, y)

)]

.

In the above

a(x, y) = F (x, y, y) +
d2(x, y)

2
= 0,

and

V (ε, x, y) =
Zε
1(x, y)− y − εg11(x, y)

ε
= εR2

1(ε, x, y).

Similar to the argument in Section 2, we need to estimate

Ex

[

exp

(

iζ · g11(x, y)

)

exp

(

iζ · V (ε, x, y) − U(ε, x, y)

)]

.

For this purpose, we need
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Lemma 4.9. There existC > 0 andε0 > 0 such that

sup
(x,y)∈V×V

sup
ε<ε0

Ee−(1+C)U(ε,x,y) <∞.

Proof. We only sketch the proof. Details can be found in Ben Arous[8](with minor modifications)
and will not be repeated here.

Fix any1/2 < λ < H. One can show that forρ > 0 there exist constantsC > 0, b > 0 and
ε0 > 0 such that for allε < ε0 and all(x, y) ∈ V × V we have

Ex

{

e−(1+C)U(ε,x,y); ‖Zε
t − φt(x, y)‖λ,1 ≥ ρ

}

≤ e
−b

ε2 .(4.6)

Here‖·‖λ,t is theλ-Hölder norm up to timet. The above estimate is a consequence of the following
application of the large deviation principle toXε

1 , i.e.,

lim sup
ε→0

ε2 logEx

{

e−
F (x,y,Xε

1)

ε2 ; ‖Xε − φ(x, y)‖λ,1 ≥ ρ

}

< −a(x, y) = 0.

On the other hand, applying Lemma 3.9 we have, for each(x, y) ∈ V × V there existsC > 0
andε0 > 0 such that

sup
ε<ε0

Ex

{

e−(1+C)U(ε,x,y); ‖Zε − φ(x, y)‖λ,1 ≤ ρ
}

<∞.

Since we have smoothness ofZε(x, y) (in x andy) andV × V is contained in a compact subset of
M ×M , the above estimate leads to

sup
ε<ε0

sup
(x,y)∈V×V

Ex

{

e−(1+C)U(ε,x,y); ‖Zε − φ(x, y)‖λ,1 ≤ ρ
}

<∞.

Together with (4.6) the proof is completed.
�

Set

Υ(ε, x, y) = eiζ·V (ε,x,y)−U(ε,x,y)

and consider the stochastic Taylor expansion for it

Υ(ε, x, y, ζ) =
N
∑

m=0

∂mε Υ(0, x, y, ζ)
εm

m!
+ SN+1(ε, x, y, ζ)ε

N+1,(4.7)

where

SN+1(ε, x, y, ζ) =

∫ 1

0
∂N+1
ε Υ(εv, x, y, ζ)

(1 − v)N

N !
dv.

Lemma 4.10. For any non-negative integersk, l,m andn, and multi-indicesα ∈ {1, 2, ..., d}k

andβ ∈ {1, 2, ..., d}l , we have
(1) For all p ≥ 2, there existsε0 > 0 such that

sup
ε≤ε0

sup
x,y∈V×V

E

( n
∑

j=0

sup
t∈[0,1]

‖Dj(∂αx ∂
β
y ∂

m
ε iζ · V (ε, x, y) − U(ε, x, y)‖pHS

)

<∞.
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(2) There existC > 0,K > 0 andε0 > 0 such that

sup
ε≤ε0

sup
x,y∈V×V

E

( n
∑

j=0

sup
t∈[0,1]

‖Dj(∂αx ∂
β
y ∂

m
ε Υ(ε, x, y, ζ)‖1+C

HS

)

< K
(

‖ζ‖+ 1
)m+k+l

.

Moreover, we have

sup
ε≤ε0

sup
x,y∈V×V

E

( n
∑

j=0

sup
t∈[0,1]

∥

∥

∥Dj(∂αx ∂
β
y ∂

m
ε

(

eiζ·g
1
1(x,y)Υ(ε, x, y, ζ)

)

∥

∥

∥

1+C

HS

)

< K
(

‖ζ‖+ 1
)m+k+l

.

Proof. We follow the argument in Ben Arous[8]. Note that

iζ · V (ε, x, y) − U(ε, x, y) = iζ

∫ 1

0
∂2εZ

εv
1 (x, y)(1 − v)dv −

∫ 1

0
∂2εθ(εv, x, y)(1 − v)dv.

The estimate in (1) follows directly from Lemma 4.8.
For the second statement, first note that

e−U ∈ Dom(D).

This is seen by an approximating argument and thatD is a closed operator. Moreover, we have

D(e−U ) = −(DU)e−U .

HenceΥ is also in the domain ofD.
It is clear that∂αx ∂

β
y ∂mε Υ is of the formWΥ, whereW is a polynomial inζ of degreem+ |α|+

|β| with coefficients derivatives (w.r.t.x, y andε) of U(ε, x, y) andV (ε, x, y). Moreover,

D(∂αx∂
β
y ∂

m
ε Υ) = (DW + iζ ·DV −DU)Υ.

The first estimate in (2) now follows immediately from (1) andLemma 4.9. The last estimate in
(2) then follows from the first one in (2) and Lemma 4.8. This completes the proof.

�

With the above lemma, we are now able to obtain an asymptotic expansion for

Ex

[

exp

(

iζ · g11(x, y)

)

exp

(

iζ · V (ε, x, y) − U(ε, x, y)

)]

.

Define

αm(x, y, ζ) = Ex

[

exp
(

iζ · g11(x, y)
)

∂mε Υ(0, x, y, ζ)

]

,

and

TN+1(ε, x, y, ζ) = Ex

[

exp
(

iζ · g11(x, y)
)

SN+1(ε, x, y, ζ)

]

.

Recall (4.7), we obtain

Ex

[

exp

(

iζ · g11(x, y)

)

exp

(

iζ · V (ε, x, y) − U(ε, x, y)

)]

=Ex

[

exp

(

iζ · g11(x, y)

)

Υ(ε, x, y, ζ)

]

=

N
∑

m=0

αm(x, y, ζ)εm + TN+1(ε, x, y, ζ)ε
N+1.
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Remark 4.11. Indeed, Lemma 4.10 provides us smoothness and boundedness of αm andTN+1.

So far, we have obtained that for allζ ∈ R
d

Ex exp

(

iζ · (Xε
1 − y)

ε
−
F (x, y,Xε

1)

ε2

)

=e−
a(x,y)

ε2

( N
∑

m=0

αm(x, y, ζ)εm + TN+1(ε, x, y, ζ)ε
N+1

)

=

N
∑

m=0

αm(x, y, ζ)εm + TN+1(ε, x, y, ζ)ε
N+1.

To apply the inversion of Fourier transformation, we need integrability ofαm andTN+1 in ζ, which
is answered in the following lemma.

Lemma 4.12. For any non-negative integersp, k and l, and multi-indicesα ∈ {1, 2, ..., d}k and
β ∈ {1, 2, ..., d}l , we have

(1) There existsK = Kp(α, β) > 0 such that

sup
(x,y)∈V×V

∣

∣

∣
∂αx ∂

β
yαm(x, y, ζ)

∣

∣

∣
≤

K

‖ζ‖2p
(‖ζ‖+ 1)m+k+l .

(2) There existsε0 > 0 andK = K(p,N, α, β,m) > 0 such that

sup
ε<ε0

sup
(x,y)∈V ×V

∣

∣

∣∂αx ∂
β
y ∂

m
ε TN+1(ε, x, y, ζ)

∣

∣

∣ ≤
K

‖ζ‖2p
(‖ζ‖+ 1)(N+1)+k+l .

Proof. The lemma follows from integration by parts in Malliavin calculus. Indeed, first note that
by equation (5.7), the Malliavin matrix ofg1 is deterministic, non-degenerate and uniform inx and
y. By Proposition 5.7 and Proposition 5.8 in Shigekawa[29] and Lemma 4.8, for any proper test
functionψ,G ∈ D

|α|,q, there existlαG andr < q such that

E
(

∂αψ(g11)G
)

= E
(

ψ(g11)lα(G)
)

and

(

E|lα(G)|
r
) 1

r ≤ K





|α|
∑

j=0

E‖DjG‖qHS





1
q

.

HereK depends on|α|, g11 and its Malliavin matrix andK is uniform inx andy.
Applying the above integration by parts formula with

ψ(u) = eiζ·u and ∂α =

(

d
∑

i=1

∂2ui

)p

.

We have

∣

∣

∣E
(

eiζ·g
1
1G
)

∣

∣

∣ ≤
K

‖ζ‖2p





2p
∑

j=0

E
(

‖DjG‖qHS

)





1
q

.
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Now the lemma follows by Lemma 4.10 and replacingG in the above by

G1 = ∂αx∂
β
y ∂

m
ε Υ(0, x, y, ζ),

and
G2 = ∂αx∂

β
y ∂

m
ε

(

SN+1(ε, x, y, ζ)e
iζ·g11

)

e−iζ·g11 .

�

Now we only need to chose2p > d+ (N + 1) + k + l in the previous lemma and obtain

pε(x, y)e
−F (x,y,y)

ε2 =
e−

a(x,y)

ε2

εd

( N
∑

m=0

βm(x, y)εm + tN+1(ε, x, y)ε
N+1

)

.

Here

βm(x, y) =
1

(2π)d

∫

αm(x, y, ζ)dζ,

and

tN+1(ε, x, y) =
1

(2π)d

∫

TN+1(ε, x, y, ζ)dζ.

Notice that theβm(x, y, ζ) is an odd function inζ whenm is odd (cf, Ben Arous[8]). Now by the
self-similarity of the fractional Brownian motion and itε = tH we obtain the desired asymptotic
formula for the density function.

4.3. The on-diagonal asymptotics. As a straightforward corollary of Theorem 4.2, we have the
following on-diagonal asymptotics:

p(t;x, x) =
1

tHd

(

a0(x) + a1(x)t
2H + · · ·+ an(x)t

2nH + o(t2nH)
)

.

In this subsection, we analyze the coefficientsan(x) and show how they are related to some func-
tionals of the underlying fractional Brownian motion.

We first introduce some notations and remind some results that may be found in [3], [4], [24]
and [14]

If I = (i1, ..., ik) ∈ {1, ..., d}k is a word, we denote byVI the Lie commutator defined by

VI = [Vi1 , [Vi2 , ..., [Vik−1
, Vik ]...].

The group of permutations of the set{1, ..., k} is denotedSk. If σ ∈ Sk, we denote bye(σ) the
cardinality of the set

{j ∈ {1, ..., k − 1}, σ(j) > σ(j + 1)}.

Finally, for the iterated integrals, defined in Young’s sense, we use the following notations:

(1)
∆k[0, t] = {(t1, ..., tk) ∈ [0, t]k, t1 ≤ ... ≤ tk};

(2) If I = (i1, ...ik) ∈ {1, ..., d}k is a word with lengthk,
∫

∆k[0,t]
dBI =

∫

0≤t1≤...≤tk≤t
dBi1

t1 · · · dB
ik
tk
.
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(3) If I = (i1, ...ik) ∈ {1, ..., d}k is a word with lengthk,

ΛI(B)t =
∑

σ∈Sk

(−1)e(σ)

k2
(

k − 1
e(σ)

)

∫

0≤t1≤...≤tk≤t
dB

σ−1(i1)
t1 · · · dB

σ−1(ik)
tk

, t ≥ 0.

Theorem 4.13. For f ∈ C∞
b (Rd,R) , x ∈ R

d, andN ≥ 0, whent→ 0,

f(Xx
t ) = f(x) +

N
∑

k=1

t2kH
∑

I=(i1,...i2k)

(Vi1 ...Vi2kf)(x)

∫

∆2k[0,1]
dBI + o(t(2N+1)H )

= f



exp





∑

I,|I|≤N

ΛI(B)tVI



x



+ o(tNH)

and

E(f(Xx
t )) = f(x) +

N
∑

k=1

t2kH
∑

I=(i1,...i2k)

(Vi1 ...Vi2kf)(x)E

(

∫

∆2k[0,1]
dBI

)

+ o(t(2N+1)H )

= E



f



exp





∑

I,|I|≤N

ΛI(B)tVI



x







+ o(tNH)

As a consequence, we obtain the following proposition whichmay be proved as in [6] (or [19]).

Proposition 4.14. For N ≥ 1, whent→ 0,

p(t;x0, x0) = dNt (x0) +O
(

tH(N+1−d)
)

,

wheredNt (x0) is the density at0 of the random variable
∑

I,|I|≤N ΛI(B)tVI(x0)

This proposition may be used to understand the geometric meaning of the coefficientsak(x0) of
the small-time asymptotics

p(t;x, x) =
1

tHd

(

a0(x) + a1(x)t
2H + · · ·+ an(x)t

2nH + o(t2nH)
)

.

For instance, by applying the previous proposition withN = 1, we get

a0(x0) =
1

(2π)
d
2

1

|det(V1(x0), · · · , Vd(x0))|

The computation ofa1(x) is technically more involved. We wish to apply the previous proposition
with N = 2. For that, we need to understand the law of the random variable

Θt =
d
∑

i=1

Bi
tVi(x0) +

1

2

∑

1≤i<j≤d

∫ t

0
Bi

sdB
j
s −Bj

sdB
s
i [Vi, Vj ](x0).

From the structure equations, we have

Θt =

d
∑

k=1



Bk
t +

1

2

∑

1≤i<j≤d

ωk
ij

∫ t

0
Bi

sdB
j
s −Bj

sdB
i
s



Vk(x0).
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By a simple linear transformation, we are reduced to the problem of the computation of the law of
theRd-valued random variable

θt =



Bk
t +

1

2

∑

1≤i<j≤d

ωk
ij

∫ t

0
Bi

sdB
j
s −Bj

sdB
i
s





1≤k≤d

.

At that time, up to the knowledge of the authors, there is no explicit formula for this distribution.
However, the scaling property of fractional Brownian motion and the inverse Fourier transform
formula leads easily to the following expression

pt(x0, x0) =
1

|det(V1(x0), · · · , Vd(x0))|

1

(2πt2H)d/2

(

1− qH(ω)t2H + o(t2H)
)

,

whereqH(ω) is the quadratic form given by

qH(ω) =
1

8(2π)
d
2

∫

Rd

E



ei〈λ,B1〉





∑

1≤i<j≤d

〈ωij, λ〉

∫ 1

0
Bi

sdB
j
s −Bj

sdB
i
s





2

 dλ.

5. APPENDIX

In this last section, we give proofs for the technical lemmaswe used before.
Fix 1/2 < λ < H. LetB(φ, ρ) ∈ Cλ(0, T ;Rd) be the ball centered atφ with radiusρ under

theλ-Hölder topology

‖f‖λ,T := ‖f‖∞ + sup
0≤s<t≤T

|f(t)− f(s)|

(t− s)λ
, for all f ∈ Cλ(0, T ;Rd).

Note that theλ-Hölder topology is a stronger topology than the usual supreme topology.
Recall the two expressions forZε

dZε
t = σ(Zε

t )(εdBt + dγt) + b(ε, Zε
t )dt(5.1)

and

Zε = φ+
N
∑

j=0

gjε
j

j!
+ εN+1Rε

N+1.(5.2)

Hereγ ∈ HH , henceγ ∈ I
H+1/2
0 (L2) ⊂ CH(0, T ;Rd).

5.1. Proof of Lemma 3.7. We show, for allt ∈ [0, T ], there exists a constantC such that forr
large enough we have

P{‖g1‖λ,t ≥ r} ≤ exp

{

−
Cr2

t2H

}

(5.3)

P{‖g2‖λ,t ≥ r} ≤ exp

{

−
Cr

t2H

}

,
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and

P{‖εRε
1‖λ,t ≥ r; t ≤ T ε} ≤ ρ(5.4)

P{‖εRε
2‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr2

ρ2t2H

}

P{‖εRε
3‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr

ρt2H

}

.

HereT ε is the first exist time ofZε fromB(φ, ρ).
We first prove the estimates forgi’s. Write

σ(Zε) = σ(φ) + σx(φ)(Z
ε − φ) +

1

2
σxx(φ)(Z

ε − φ)2 +O(ε3)(5.5)

and

b(ε, zε) = b(0, φ) + bx(0, φ)(Z
ε − φ) +

1

2
bxx(0, φ)(Z

ε − φ)2 +O(ε3)(5.6)

+ bε(0, φ)ε + bεx(0, φ)(Z
ε − φ)ε+O(ε3)

+
1

2
bεε(0, φ)ε

2 +O(ε3).

Substituting into the two expressions ofZε gives us

dg1(s) = σ(φs)dBs + σx(φs)g1(s)dγs + bx(0, φs)g1(s)ds+ bε(0, φs)ds.(5.7)

and

dg2(s) =2σx(φs)g1(s)dBs + σxx(φs)g1(s)
2dγs + σx(φs)g2(s)dγs(5.8)

+ bxx(0, φs)g1(s)
2ds+ bx(0, φs)g2(s)ds + bεε(0, φs)ds

+ 2bεx(0, φs)g1(s)ds.

By (5.7) and Remark 2.1, it is clear that

‖g1‖λ,t ≤ C‖B‖λ,t, t ∈ [0, T ],

whereC is a constant depending only on‖φ‖λ,T , ‖γ‖λ,T andT . This gives us the first estimate in
(5.3).

Similarly, by (5.8) and Remark 2.1 together with the estimate we just obtained forg1, we have

‖g2‖λ,t ≤ C(1 + ‖g1‖λ,t + ‖g1‖
2
λ,t + ‖g1‖λ,t‖B‖λ,t)

≤ C‖B‖2λ,t.

HereC is also constant depending only on‖φ‖λ,T , ‖γ‖λ,T andT . Hence we have proved (5.3).
In what follows, we prove (5.4). To lighten our notation, in discussion that follows, we suppress

the supper-scriptε in Rε
i whenever there is no confusion.

Since we work inB(φ, ρ), the first inequality in (5.4) is apparent. We therefore onlyneed to
concentrate on the last two inequalities.
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First we use similar idea to deduce the equations satisfied byRi, i = 1, 2, 3. For this purpose,
defineµ1, µ2 andν1, ν2 by

σ(Zε) = σ(φ) + µ1ε(5.9)

= σ(φ) + σx(φ)(Z
ε − φ) + µ2ε

2.

and

b(ε, Zε) = b(0, φ) + ν1ε(5.10)

= b(0, φ) + bx(0, φ)(Z
ε − φ) + bε(0, φ)ε + ν2ε

2.

It is clear thatµi; i = 1, 2 (resp.νi) are of the formψµ
i (εR1)(R1)

i (resp.ψν
i (εR1)(R1)

i), where
ψi are some functions of bounded derivatives determined byσ andb. Hence inB(φ, ρ), µ1, ν1
are functions ofR1 with bounded derivatives, and there exists a constantC, depending only on
derivatives ofσ andb, such that

‖µ1‖λ,t, ‖ν1‖λ,t ≤ C(1 + ‖R1‖λ,t) and ‖µ2‖λ,t, ‖ν2‖λ,t ≤ C(1 + ‖R1‖λ,t)
2.(5.11)

Equations (5.2), (5.1), (5.9) and (5.10) give us

dR1(s) = σ(Zε
s )dBs + µ1dγs + ν1ds(5.12)

dR2(s) = 2µ1dBs + 2µ2dγs + σx(φ)R2dγt + bx(0, φs)R2ds+ 2ν2ds.

Since we work with inB(φ, ρ), we have

‖Zε‖λ,t ≤ ‖φ‖λ,t + ρ

hence
∥

∥

∥

∥

∫ t

0
σ(Zε

s )dBs

∥

∥

∥

∥

λ,t

< C‖B‖λ,t

for some constantC depending only onρ, φ and derivatives ofσ. By standard Picard’s iteration,
we conclude that

‖R1‖λ,t < C‖B‖λ,t(1 + ‖γ‖λ,t), in B(φ, ρ)(5.13)

for some constantC uniformly bounded inε.
The equation forR2 is

dR2(s)− σx(φ)R2dγs − bx(0, φs)R2ds = 2µ1dBs + 2µ2dγs + 2ν2ds.(5.14)

Recall thatµ1 is of the formψ1(εR1)R1, and inB(φ, ρ),

‖εR1‖λ,t < ρ.

We obtain
∥

∥

∥

∥

ε

∫ t

0
µ1dBs

∥

∥

∥

∥

λ,t

=

∥

∥

∥

∥

∫ t

0
ψµ
1 (εR1)(εR1)dBs

∥

∥

∥

∥

λ,t

< ρ2C‖B‖λ,t
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for some constantC uniformly bounded inε. Similarly,
∥

∥

∥

∥

ε

∫ t

0
µ2dγs + ε

∫ t

0
ν2ds

∥

∥

∥

∥

α

=

∥

∥

∥

∥

∫ t

0
ψµ
2 (εR1)(εR

2
1)dγs +

∫ t

0
ψν
2 (εR1)(εR

2
1)ds

∥

∥

∥

∥

λ,t

≤ ρ2C‖R1‖λ,t(1 + ‖γ‖λ,t)

≤ ρ2C‖B‖λ,t(1 + ‖γ‖λ,t)

for some constantC uniformly bounded inε. Hence by multiplying a factor

exp

{

−

∫

σx(φ)dγ −

∫

bx(0, φ)du

}

to both sides of (5.14) and integrating from0 to t, we conclude

P{‖εR2‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr2

ρ2t2H

}

.

This gives us the desired estimate forεR2. A similar argument also gives us

P{‖R2‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr

ρt2H

}

.

Continuing this type of argument, the equation forR3 is given by

dR3(s)− σx(φ)R3dγs − bε(0, φ)R3ds = σ(φ)R2dBs + µ2dBs + µ3dγs +
1

2
σxx(φ)R1R2dγs

+
1

4
bxx(0, φ)R1R2ds+ ν3ds+ bε,x(0, φ)R2ds.

By (5.11) and (5.13) we conclude that inB(φ, ρ) we have for all0 < ε ≤ ρ
∥

∥

∥

∥

ε

∫ t

0
σ(φ)R2 + µ2dBs

∥

∥

∥

∥

λ,t

< ρC‖B‖2λ,t,

and similar estimates for the rest of the terms on the right hand side of the equation forR3. Hence

P{‖εR3‖λ,t ≥ r; t ≤ T ε} ≤ exp

{

−
Cr

ρt2H

}

.

Therefore, we have proved (5.4).

5.2. Proof of Lemma 3.9. For the convenience of quick reference, we re-state the lemma here.

Lemma 5.1. Let
θ(ε) = F (Zε) = θ(0) + εθ′(0) + ε2U(ε)

whereU(ε) =
∫ 1
0 (1− v)θ′′(εv)dv. There existβ > 0 andε0 > 0 such that

sup
0≤ε≤ε0

E

(

e−(1+β)U(ε);Zε ∈ B(φ, ρ)
)

<∞.

Observe that

(Zε − φ)2 = ε2g21 +
1

2
ε3g1R2 +

1

2
ε3R1R2.

Thus, if we write

U(ε) =
1

2
θ′′(0) + εR(ε)
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then

|R(ε)| ≤ C(|R3|+ |g1||R2|+ |R2||R1|+ |R3
1|).(5.15)

Together with the fact that|εR1| ≤ ρ we obtain

|εR(ε)| ≤ C(|εR3|+ |g1||εR2|+ ρ|R2|+ ρ|R2
1|).

Hence, from the estimates in Lemma 3.7, we conclude that for eachα > 0, there existsρ(α) such
that for allε ≤ ρ ≤ ρ(α), we have

sup
0≤ε≤ρ

E

(

e(1+α)|εR(ε)|; t ≤ T ε
)

<∞.

Therefore, to prove Lemma 3.9 is reduced to prove the following

Lemma 5.2. There exists aβ > 0 such that

E exp

{

−(1 + β)

[

1

2
θ′′(0)

]}

<∞.

Proof. We follow the proof in Ben Arous[7]. Since

U(0) =
1

2
θ′′(0) =

1

2

[

dF (θ)g2 + d2F (θ)g21

]

,

it is clear that to prove the above lemma, it suffices to prove that for sufficiently larger we have

P

{

−
1

2

[

dF (φ)g2 + d2F (φ)g21

]

≥ r

}

≤ e−Cr, with C > 1.(5.16)

Set
Y ε = (εg1, ε

2g2)

with
dY ε

s = εσ̄(s, Y ε)dBs + b̄(ε, s, Y ε)ds, Y ε
0 = 0.

Hereσ̄ andb̄ are determined by (5.7) and (5.8). DefineA ⊂ C([0, T ],R2d) by

A = {ψ = (ψ1, ψ2) ∈ C([0, T ],Rd ×R
d) : dF (φ)ψ2 + d2F (φ)ψ2

1 ≤ −2}.

We have

P{Y ε ∈ A} = P

{

−
1

2

[

dF (φ)g2 + d2F (φ)g21

]

≥
1

ε2

}

and by the large deviation principle forY ε

lim sup
ε→0

ε2 logP{Y ε ∈ A} ≤ −Λ∗(A).

HereΛ∗ is the good rate function ofY ε. It is clear that to prove inequality (5.16) it suffices to
prove thatΛ∗(A) > 1.

Recall that

Λ∗(A) = inf

{

1

2
|k|2HH

; Φ∗(k) ∈ A

}

whereu = Φ∗(k) is the solution to the ordinary differential euqaiton

dus = σ̄(s, us)dks + b̄(0, s, us)ds, with u0 = 0.
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It is easy to see from (3.4), (3.5), (5.7) and (5.8) that we have explicitly

u = (dΦ(γ)k, d2Φ(γ)k2).

By our assumption H 2 and the explanation after it, there exists ν ∈ (0, 1) such that for allk ∈
HH − {0} we have

d2F ◦ Φ(γ)k2 > (−1 + ν)|k|2HH
,

or

|k|2HH
> −

1

1− ν
(d2F ◦ Φ(γ)k2) = −

1

1− ν
(d2F (φ)(dΦ(γ)k) + dF (φ)(d2Φ(γ)k2)).

Therefore, ifΦ∗(k) ∈ A, we have

1

2
|k|HH

>
1

1− ν
> 1,

which impliesΛ∗(A) > 1 and completes the proof. �
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