SMALL-TIME KERNEL EXPANSION FOR SOLUTIONS OF STOCHASTIC
DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS

FABRICE BAUDOIN AND CHENG OUYANG

ABSTRACT. The goal of this paper is to show that under some assumptiona d-dimensional
fractional Brownian motion with Hurst parametéf > 1/2, the density of the solution of the
stochastic differential equation

d t )
Xi=a+ s [ vixas,
i=170
admits the following asymptotics in small times
1 _d@y

N
p(t;x,y) = (tH)de Toe2H (Zci(:my)t%H +O(t2(N+1)H)>'

=0
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1. INTRODUCTION

In this paper, we are interested in the study in small timesaxfhastic differential equations on
Rd

d t '
(1.1) XF=a+ Z/ Vi(XZ)dB!
=170

whereV;’s are C*°-bounded vector fields oR? and B is a d-dimensional fractional Brownian
motion with Hurst parametell > 1/2. SinceH > 1/2, the integralsfot V;(X%)dB! are under-
stood in the sense of Young’s integration (see [30] and [&Ld it is known (see by e.d. [27]) that
an equation like[{1]1) has one and only one solution. Moreif\fer every z € R?, the vectors
Vi(x),--- , Vy(z) form a basis oRR?, then this solution has for evety> 0, a smooth density with
respect to the Lebesgue measure (see [5]land [28]).

Our main result is the following:

Theorem 1.1. Let us assume that:

e For everyr € R?, the vectord/; (z), - - - , Vy(z) form a basis oR?.
e There exist smooth and bounded functimﬁyssuch that:

d
[‘/iy ij] = Z wﬁj%v
=1

and

! J

Wij = —Wi-

Then, in a neighborhood” of z, the density functiom(¢; z,y) of X} in (1) has the following
asymptotic expansion near= 0

2 N
p(t; z, y) = ﬁe_zg}[y) <Z Ci(wa y)tziH + 7GN-l-l(t7 z, y)t2(N+1)H> ) ye V.
i=0
Hered(x,y) is the Riemannian distance betweeandy determined by the vector fields, ..., Vj.
Moreover, we can chosé such that;(z,y) areC>® in V x V c RY x R4, and for all multi-indices
o andpg

sup  sup 07050 a1 (t, @, y)| < oo

t<to (z,y)eVxV
for somety > 0.

For H = 1/2, which corresponds to the Brownian motion case, the aboser¢m admits
numerous proofs. The first proofs were analytic and basetiepadrametrix method. Such meth-
ods do not apply in the present framework since the Markoypgmy for X is lost whenever
H > 1/2. However, in the seminal works|[2] and [1], Azencott introdd probabilistic methods
to prove the result. These methods introduced by Azencatt wWeen further developed by Ben
Arous and Léandre in[7].[8].[9] and [20], in order to covke case of hypoelliptic heat kernels.
Let us sketch the strategy of [8] which is based on the Laptaethod on the Wiener space and
which is the one adopted in the present paper.



The first idea is to consider the scaled stochastic diffeakatjuation

dXf=e> Vi(Xf)dB,  with X§ = .
=1
We observe that there exist neighborhoddsand V' of xy and a bounded smooth function
F(z,y,z)onU x V x R"™ such that:
(1) For any(z,y) € U x V the infimum
x,2)*
2

inf {F(m,y,z) + d

is attained at the unique point

(2) Foreachz,y) € U x V, there exists a ball centeredqatvith radiusr independent of:, y
such thatF'(z, y, -) is a constant outside of the ball.

So, denoting by. (¢, y) the density ofX{, by the Fourier inversion formula we have

_F(zo,y,y) 1 i v _F(zo,y,z)
e K e e AT

1 i¢(X§—y) Flzgy,X7)
= ey | KE(e e =)
s

Thus, the asymptotics @f (x, y) may be understood from the asymptotics when 0 of

iC(XE—y)  Fla0.9,X5)
Jg((L’Q,y) =E(e € e 2 .

Then, by using the Laplace method on the Wiener space bas#tkdarge deviation principle,
we get an expansion in powers ©bf J.(zg, y) which leads to the expected asymptotics for the
density function.

In this work, we follows Ben Arous’ approach and show how ityrbe extended to encompass
the fractional Brownian motion case.

,ZGR”}:()

The rest of this paper is organized as follows. In a prelimjirsgction we remind some known
facts about fractional Brownian motion and equations drive it. In the second section we show
how the Laplace method may be carried out in the fractionaWBran motion case and finally
in the third section which is the heart of the present paperpmve Theorerm 1.1. We move the
proofs of some technical lemmas to the Appendix.

Remark 1.2. Under the framework of this present work, the Laplace mettasdbe obtained in
general hypoelliptic case and without imposing the strrecquations on vector fields in Theorem
[I.1. These two assumptions are imposed to obtain the cdrieactannian distance in the kernel
expansion.

Remark 1.3. WhenH > 1/2, to obtain a short-time asymptotic formula for the densftgalution
to equation[(1.11) but with drift, one need to work on a versidhaplace method with fractional
powers ofz, which will be very heavy and tedious in computation.

Remark 1.4. When the present work was almost completed, we noticed grabéfor the Laplace
method for stochastic differential equation driven by fragal Brownian motion with Hurst pa-
rameterl/3 < H < 1/2 became available by Y. Inahafi8] on mathematics Arxiv.
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2. PRELIMINARIES

2.1. Stochagtic differential equations driven by fractional Brownian motions. We consider
the Wiener space of continuous paths:
Wt = (C(0,7],RY), (Bosi<r, P)

where:
(1) ¢([0,T],R?) is the space of continuous functiofis 7] — R?;
(2) (Bt);> is the coordinate process defined®yf) = f (t), f € C([0,T],R%);
(3) Pis the Wiener measure;
(4) (Bt)o<i<t is the P-completed) natural filtration off; )<,

A d-dimensional fractional Brownian motion with Hurst pardaerdd < (0, 1) is a Gaussian pro-
cess
By = (B},...,B}), t >0,
whereB!, ..., B% ared independent centred Gaussian processes with covarianctoiu
1
R(t.s) =3 (s*H +¢2H — |t — s?H).

It can be shown that such a process admits a continuous rewsiose paths are Holdgrcontin-
uous,p < H. Throughout this paper, we will always consider the ‘regutase, H > 1/2. In
this case the fractional Brownian motion can be constructethe Wiener space by a Volterra type
representation (see [12]). Namely, under the Wiener meathug process

t
2.1) B, — /0 Ku(t, s)ds,t > 0

is a fractional Brownian motion with Hurst paramefér where
t
1 3 1
Kg(t,s) :cHsi_H/ (u—s) 20 24du, t>s.
S

andcy is a suitable constant.
Denote by¢ the set of step functions df, T'|. LetH be the Hilbert space defined as the closure
of £ with respect to the scalar product

(Lo, Lo,spm = Ru(t, s).
The isometryK;; from 7 to L([0, T']) is given by

0Ky

T
(K50)(s) = / o251 1 .

Moreover, for anyp € L?([0,T]) we have

T T
| et = [ tsiersas.
0 0

We consider the following stochastic differential equatio

t d ¢
(2.2) XF = x—l—/ Vo(X®)ds + Z/ Vi(X®)dB?
0 i1 /0
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where theVj's are C> vector fields onR¢ with bounded derivatives to any order aftis the
d-dimensional fractional Brownian motion defined by {2.1)idence and uniqueness of solutions
for such equations have widely been studied and are knowaldhbinthis framework.

2.1.1. Pathwise estimates.et 1/2 < A\ < H and denote by’*(0, T; R?) the space of\-Holder
continuous functions equipped with the norm

[f(t) = F(s)]

IflIxz == 1lfllo + sup o

o<s<t<T (t—5)
where| f|lo := supsepo 7y |.f(£)]-
The following remarks will be useful later.

Remark 2.1.

1. ltis clear that if f1, fo € C?, thenfyfo € C* with || fi fallas < || fillasll f2llas. Therefore,
polynomials of elements i@ are still in C*. It is also clear that whenevep is a Lipschitz
function andf € C*, we havep(f) € C*.

2. Letf € CMN0,T;R%) andg : [0, 7] — M4 be a matrix-valued function and suppase C*.

By standard argument (see Terry Ly{#28] for instance),

/'gs df, € CM0, T; R™)
0

/ gs df s
0 AT

)

In the above’ is a constant only depending dnand 1.

with

< Cllgliarll fliaz-

Lemma 2.2. (Hu-Nualart, [16]) Consider the stochastic differential equatién {1.1), asdume
that E(|Xo|P) < oo for all p > 2. If the derivatives o¥/;'s are bounded and blder continuous of

orderA > 1/H — 1, then
E ( sup ]Xt]p> < 00
0<t<T

for all p > 2. If furthermoreV;’s are bounded andE(exp(\|X(|?)) < oo for any A > 0 and

q < 2H, then
E (eXp/\ ( sup |Xt|q>> < 00
0<t<T

2.2. Cameron-Martin theorem for fBm. Consider the classical Cameron-Martin spa¢é =
{h € Po(R?) :||h]|» < oo}, where

o
||hu%=< / |hs|2ds) .

The Cameron-Martin space for the fractional Brownian mofibis
Ay = Ky (I0),

foranyA > 0 andq < 2H.
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where the mafKy : /7 — 53 is given by
t .
(Kgh) = / Ky (t, s)hsds, forall h € 2.
0

The inner product o7 is defined by
kv, ko) iy = (h1,ha) sy ki = Kgrhyyi = 1,2.
HenceKy is an isometry betweer?” and.77;.
Remark 2.3. It can be shown that whep € J#3, v is H-Holder continuous.
The following Cameron-Martin theorem is known (seel[12]).

Theorem 2.4 (Cameron-Martin theorem for fBm)Let B = B + k be the shifted fractional
Brownian motion, wheré € 7 is a Cameron-Martin path. The la®%, of B* and the lawPy
of B are mutually absolutely continuous. Furthermore, the Rablikodym derivative is given by

dPg

In the aboveh = (K )~k and the integral againsB is understood as Young’s integral.

dPk P 1
8 —exp | [ (5 0B = kIR |

2.3. Large deviation principle for fBm. The following large deviation principle for stochastic
differential equation driven by fractional Brownian maties a special case of Proposition 19.14
in Friz-Victoir[14] (see also[25]).

Proposition 2.5. Fix A € (1/2, H). Let X*© be the solution to the following stochastic differential
equations driven by fBri®

t d t
(2.3) Xf:onr/ VO(XS)derZE/ Vi(X,)dB!
0 i1 J0

whereV;’s are C* vector fields oriR¢ with bounded derivatives to any order. The procé&s
satisfies a large deviation principle, krHolder topology, with good rate function given by

A(¢) = inf{A(7) : ¢ = I(7)}

wherel is the 16 map given by(213) with being replaced by, andA is given by

) s, i v €

A(y) =

400 otherwise.
3. LAPLACE METHOD
Consider the following stochastic differential equatiagivein by fractional Brownian motion on

R%:

t d t
Xf:woJr/ x/o(XS)dHZE/ Vi(X,)dB:.
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For the convenience of our discussion, in what follows, witgerthe above equation in the follow-
ing form

t t
X;=ate [o(xDiB,+ [ b X,
0 0

whereo is a smoothl x d matrix andb a smooth function fronR*™ x R? to R?. We also assume
thato andb have bounded derivatives to any order.

Let £ and f be two smooth functionals with smooth derivatives to anyeartiVe are interested
in studying the asymptotic behavior of

J(e) = E[f(X7) exp{—F(X*)/%}]
ase | 0. Indeed, the following theorem is the main result of thigisec

Theorem 3.1. Under the assumption H 1 and H 2 below, we have
J(e) =e e E <a0 + age + ...+ ane + O(5N+1)>.
Here
a = inf{F + A(¢),¢ € P(RY)} = inf{F o ®(k) + 1/2|k|%, . k € Hu}
and
c=inf {dF(¢;)Y;,i € {1,2,...,n}},
whereY; is the solution of
dYi(s) = 0,0(¢i(s))Yi(s)dvi(s) + 9:b(0, ¢i(s))ds + 0:b(0, ¢i(s))Yi(s)ds
with Y;(0) = 0.

For eachk € 73, denote byd (k) the solution to the following deterministic differentiadea-
tion

(3.1) duy = o(ug)dky + b(0, ug)dt, with ug = x.
Lemma 3.2. Letd be defined as above, we have

A@) = int { L1130 = B0, < i}
Moreover, ifA(¢) < oo, there exists a uniqué € 7% such that®(k) = ¢ and A(¢) =
1/2(|k[1%, -
Proof. The first statement is apparent. For the second statemewhiywaeed to notice that if

¢ = P(k1) = P(ko), ki, k1 € 0,
then .
[ oot~k =0, e

which implies thatk; = k5, since we assume that columbscofare linearly independent. The
proof is therefore completed. d

Throughout our discussion we make the following assumption
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Assumption 3.3.

e H1: F + A attains its minimum at finite number of paihis, ¢o, ..., ¢, on P(R?).

e H2: Foreachi € {1,2,...,n}, we havep; = ®(~;) and~; is a non-degenerate minimum
of the functionalF" o ® + 1/2| - [|3,, , i.e.:
Vk € Ay — {0}, d*(Fo®+1/2|-|%,) 1)k > 0.
Lemma 3.4. Under assumption H 1, we have

a ¥inf{F + A(¢), ¢ € P(RY)} = inf {F o ®(k) + %Hk;HﬁfH,k € %H} ,

and the minimum is attained atpathsyy,~s, ..., 7, € 5% such that

(i) = ¢i
and
1 2
5”%‘”%{ = AP (7))
Proof. This is a direct corollary of Lemnia_3.2. O

Assumption H 2 has a simple interpretation as follows.4.be one of they;’s above. Define a
bounded self-adjoint operator o’ by

d*F o ®(y)(Kgh', Kgh?) = (AR, h?) 4,  for ', h? € 2.
Lemma 3.5. The bounded self-adjoint operatdris Hilbert-Schmidt.

Proof. The proof is similar to that in Ben Arous[7] but with slight atiication. Thus we only
sketch the proof here . In what follows,always denotes an element#z; andh = Klglk its
corresponding element ig?’.

For anyk!, k% € 7, we have

d*F o ®(y)(Kgh', Kgh?) = d*F o ®(y)(k', k?)
= *F(d®(7)k", d()k?) + dF () (D (7) (k' k?)).
Let
¢=2(y)  and x(k) =dP(y)k.
It can be shown (cf. Ben Arouis[7]),
d¢t = O'(th)d’}/t + b(07 qbt)dt) Wlth ¢0 =7z,
dxi = o(¢¢)dki + 020 (d) xedrye + 0:b(0, d¢) xedt, with xo =0,

and

D) (K, k2) (¢ / Q(t, 5)050(¢s) (x (k") sdk? + X(k?),dk?)

/ kY s, X (K?)s)dys + / (x(EY)s, x(K?)s)ds.



HereQ(t, s) takes the form
Q(ta 3) = ax¢t(x)ax¢s(x)_l

Moreover, we have

(3.2) ) = [ Qo).

Set

B VIR0 = [ Q)0 60) (Kb )+ XK ) ().

= J, 9 §)20 (¢s) (X (k1) 5dk2 + x (k?)sdlk})

t t
= /0 Qt, s)@xa(tbs)mﬁgif:’m (x(K")sh2 + x(k*)shy, ) dsdu.

Define a bounded self-adjoint operatbifrom 7 to ¢ by
dF(¢)(V(h', h?)) = (Ah', h?)

We conclude tha#l is Hilbert-Schmidt since, by (3.2) and (8.3), it is definednfr aL? kernel.
Therefore, to complete the proof, it suffices to show that A is Hilber-Schmidt. By the same
argument as in Ben Arous[7], we only need to show

[d®(V) Krhlloo = IX(Krh)lleo < Cllhlleo,  forallh € 2.

Indeed, by an easy application of Gronwall inequality todhjgation fory, we have
[de()(Kuh)|loo < [[Krhlloo-

Moreover, since
t
(Kyh), = / K (t, s)hads,
0
and note)K (¢, s)/0s € L', we have

0Ky (t,s)

Kghl; <
[Kirhle < Os

ds,

t t t
| Kuttphaas =] [ hswds' <l |

The proof is completed.
O

From the above lemma, assumption H 2 simply means that théesmaigenvalue of4 is
attained and is strictly greater thatl.
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3.1. Localization around the minimum. By the large deviation principle, the sample paths that
has contribution to the asymptotics &f¢) lie in the neighborhoods of the minimizers Bf+ A.
More precisely,

Lemma 3.6. For p > 0, denote byB(¢;, p) the open ball (undeA-Hdlder topology) centered at
¢; with radiusp. There exist! > a andey > 0 such that for alls < ¢

J(e) —E | f(X5)e PO/ x* ¢ U B(¢i,p) || < e .
1<i<n
Proof. This is a consequence of the large deviation principle. O
Assume thak = 1, i.e., F’ + A attains its minimum at only one path Let
Je) = E [f(X5)e "D/ X € B(o,p)] .

The above lemma tells us that to study the asymptotic beha¥bid(¢) ase | 0, it is suffice to
study that ofJ,(¢).

3.2. Stochastic Taylor expansion and Laplace approximation. In this section, we prove an
asymptotic expansion faf, ().
Let ¢ be the unique path that minimizés+ A. There exists g € 7% such that

1
6=0(),  andA@) =3I,
and for allk € s — {0}:
1
P(F 0@+ S| 25,k >0,

a X(k) =d®(y)k  and (k. k) = d>®(7)(k, k).
We have
(3.4) dxt = o(¢t)dky + 0:0(Pr) xedye + 02b(0, Gr) xedt,
and
(3.5) diyy =20,0(¢e)Xedky + 02,0 () X7 dve + 0uo(de)hrdye

+ 92,b(0, ¢r)x7dt + Oyb(0, ¢y )brdt.

Herexo = ¢9 = 0. These formula will be useful later.
Consider the following stochastic differential equation

t t
Zf =z + / 0(Z:)(edBs + dvs) + / b(e, Z5)ds.
0 0

Itis clear thatZ® = ¢. DenoteZ,"* = 9™ Z; and consider the Taylor expansion with respect to
neare = 0, we obtain

N .
_ g;€’ N+1
Z€—¢+ZT+€ R?\/—i—l?
Jj=0



1
whereg; = Z7:0. Explicitly, we have

d.gl(s) = J(¢s)st + amU(QSs)gl(S)d'ys + 8xb(07 ¢s)91 (S)dS + 8€b(0> ¢s)d8'

Similar to the Brownian motion case, we have the followingneates, the proof of which is
postponed to Appendix.

Lemma 3.7. For anyt € [0,T], there exists a constardt > 0 such that forr large enough we
have

Cr?
P{llg1llne > r} < exp {_tQ_H}

Cr
P{[lgsllns > r} < exp {_tQ_H}

and

P{lleR5|[x: > r;t < T} < p
Cr?
P{|leR5|[x: > r;t <T°} < exp {_W}

Cr
Pl 2 rit <7} <o { -0,

HereT* is the first exist time af° from B(¢, p).
Letf(e) = F(Z%). By Taylor expansion of (¢) with respect ta, we obtain
(c) = 0(0) + 0’ (0) + 2U (¢).
Here

1
Ule) = /0 (1= )¢ (ev)dv, and 6(0) = F(o).

Lemma 3.8. With the above notation, we have

0'(0) = dF(¢)g1 = — /OT (K3) M (K ")) (dBs + dF(6)Y.
HereY is the solution of
dYs = 0:0(s)Ysdrys 4 0:b(0, g5 )ds 4 0:6(0, ¢5)Ysds, Y (0) = 0.
Proof. By an easy application of the Gronwall's inequality [fo (3w have for any; € 7,
(3.6) 1d®(y)klloo < Cllkllo

for some positive constardi. Therefore,d® () can be extended continuously to an operator on
P(R%). We have

g1 =d®(y)B+Y.
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On the other hand, sinegis a critical point ofF o ® +1/2|| - H?%”H and notel|k|| s, = K5 k|,
we have

T . .
(3.7) 4F (6)(dD(1)k) = — /0 (), (K5 E) ds

T .
== [ (@i i)
for all k € 7% . The second equation above can be seen as follows. Denote by
h=Ky'k

We have

s

’ : T : 0K :
/O (K3 " (Ky'y)) dks = /O (Kj) N(Eg'), /O aSH(s,u)hududs
T T . 9
:/O hu/u ((K}k{)_l(KI}l’y))s%(s,u)ds
T .

- / ha (K;lv)udu
0

T . .
:/0 (K33'y), (K5;'k) ds.

From [3.6) and[(3]7) we conclude that the pétﬁj’;)_l(KEly) has bounded variation and
hence, by passing to limit, we obtain

T .
AF ($)(d®(7)B) = /0 ((K7) " (K5')) dBs.

The proof is completed.

O
Now, by Theoremh 2}4 we have
Jp(f‘?)
€ T . 2
=E | f(Z°) exp <—FE§ )> exp (—é/o (K7 M (Ky'y)),dBs — HEL?H) ; Z¢ € B(¢,p)
~E[V(e): 27 € B(owp) exp |~ (F0) + 3l ) | exw | -2

=E[V (¢); Z°B(¢, p)] exp [—;2] exp [—M] .

In the above
Vie) = f(Z%)e™ V0,

To prove the Laplace approximation, it now suffices to estinidV (¢); Z¢ € B(¢,p)]. For
this purpose, we need the following two technical lemmas.
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Lemma 3.9. Let

where
1
U(e) = / (1= 0)8"(ev)dv,  and 0(0) = F().
0
There exist3 > 0 andey > 0 such that

sup E (e_(HB)U(a);t < T€> < 0.
0<e<eg

Proof. See Appendix. O

Lemma 3.10. For all m > 0 andp > 2, there exists any > 0 such that

supE [ sup [0"ZF)P | < 0.
e<eo  \t€[0,1]

Proof. This is a consequence of Lemal2.2. O
DenoteV (™) (¢) = 9™V (¢). By Lemma3.D and Lemnia3]10, one can show
E[V™ (0)]P < oo, forallp > 1,m > 0.

Consider the stochastic Taylor expansion¥ak)

N
™V m (o
Vie) = Z ml 0 +eM SR
m=0 ’

where

Ly WV (o) (1 — o)V
e [ LY,

It can be shown, again by Lemrmal3.9 and Lenhmal3.10 (cf, Bensfrou

sup E[|S¥11]; 2° € B(6),p)] < oo.
0<e<ep

Thus we conclude that

N
E[V(e); Z° € B(¢,p)] = D ame™ + O(eN ).
m=0
Moreover, one can show
~ EVm(0)

[67%% |
m!
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4. SHORT-TIME EXPANSION FOR TRANSITION DENSITY

We now arrive to the heart of our study and are interested faimibg a short-time expansion
for the density function of;, where

d
(4.1) dX; => Vi(X)dBj, Xo=uz
i=1

Here V;'s are O vector fields onR? with bounded derivatives to any order. Throughout this
section, we shall also make the following assumption on #wtor fieldsV;’s.

Assumption 4.1.

e Foreveryr € R?, the vectord/; (z), - - - , Vy(z) form a basis o,
e There exist smooth and bounded functioxéyssuch that:

d
Vi, Vi =) wiiWi,
=1

and

I _ 7
Wij = —Wy-

The first assumption means that the vector fields form artiellififferential system. As a conse-
guence of Baudoin and Hairel[5], it is known that the lawXgf ¢ > 0, admits therefore a smooth
densityp(¢; =, y) with respect to Lebesgue measure. The second assumptibgesroetric nature
and actually means that the Levi-Civita connection assegi@ith the Riemannian structure given
by the vector field¥/’s is

1
VxY = §[X, Y]
In a Lie group structure, this is equivalent to the fact tihat LLie algebra is of compact type. We

will see the use of this assumption in a section below.
The following theorem is the main result of our paper.

Theorem 4.2. Fix = € R, Assume that the assumptionl4.1 is satisfied, then in a naigbod
V of z, the density functiop(t; z,y) of X; in (4.1) has the following asymptotic expansion near
t=0
| ) 2%iH onH
p(t,ac,y) = We 2020 ;Cl(x>y)t +TN+1(t7$7y)t ) NS V.
Hered(z,y) is the Riemannian distance betweeandy determined by, ..., V;. Moreover, we
can chosé/ such thate;(z,y) areC* in V x V c R? x R4, and for all multi-indicesy and 3

sup  sup fagf?;afTN+1(t7x7y)‘ < o0
t<to (z,y)€V xV

for somety > 0.

Once the Laplace approximation in the previous section faioéd, the proof of the above
theorem is actually quite standard and follows closely ttggiment given, for instance, in Ben
Arous|[8]. Thus, for most of the lemmas in what follows, weyoaltline the proofs but stress the
main differences with Brownian motion case.
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4.1. Preliminaries in differential geometry. The vector fields/;, V5, ..., V; on R? determine a
natural Riemannian metrig= (g;;) onR? under whichV; (z), Va(z), ..., Vy4(z) form an orthonor-
mal frame at each point € R¢. More explicitly, leto be thed x d matrix formed by

o(z) = (Vi(z), Va(z), ..., Va(z)).
Denote byl" the inverse matrix ofo*. Then the Riemannian metricis given by
gi5 = Lij, 1<i,j<d.

Throughout our discussion, we denoteMythe Riemannian manifol? equipped with the metric
g specified above. The Riemannian distance between any twispgiy on M is denoted by

d(x,y). We recall that
d = f d
( ’Yelcn z,y) / \/ )) i

wherey € C(x,y) denotes the set of absolutely continuous curyes[0,1] — R¢, such that

7(0) = z,~(1) =
More analytically, this distance may also be defined as

d
d(x,y) = sup{f(z) — f(y), f € C;°(R), > _(Vif)* <1},
i=1

whereCg°(R?) denotes the set of smooth and bounded function®@nSince the vector fields
Vi,---, V4 are Lipschitz it is well-known that this distance is compland that the Hopf-Rinow
theorem holds (that is closed balls are compact).

Due to the second assumptionl4.1, the geodesics are easdyilial. Ifk : R>yp — Ris a
a-Holder path witho > 1/2 such that:(0) = 0, we denote byp(z, k) the solution of the ordinary

differential equation:
d t
T =1+ Z/ Vi(s)dk?.
i=1 70

Whenever there is no confusion, we always suppress thengt@ointz and denote it simply by
(k) as before.

Lemma4.3. ®(z,k) is a geodesic if and only #(t) = tu for someu € R%.
Proof. It is well-known that geodesiasare smooth and solutions of the equation
Vecd =0,

whereV is the Levi-Civita connection. Therefore, in orde(k) to be a geodesic, we first see that
k needs to be smooth and then that
d

VZ;-Ll Vi(zs)ki z; Vl(l's)k; = 0.

Now, due to the structure equations

Vi, V] Zwm,
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the Christoffel's symbols of the connection are given by
1 ; , 1
! l !
So the equation of geodesics may be rewritten

42k d
SVilws) + Y whikik

d82 1)''s gw(‘rs) =0.
=1 i,,01=1
Due to the skew-symmetry,; = —w!, we get
d?kL B
ds2 7
which leads to the expected result. d

As a consequence of the previous lemma, we then have theviofdkey result:

Proposition 4.4. LetT > 0. Forz,y € RY,

d*(z,y)
inf k%5, = —57
keHH,ng(w,k):y” 523 T2H
Proof. In a first step we prove
dz(x y) 2
s < inf k .
T = keHH,<11>Iclr(:v,k)=y” o

Let k € % such thay (k) = x, (k) = y. Denote byz the solution of the equation
d
dz =Y Vi(z)dkj, 0<t<T.
i=1
We have therefore:
0=, 2T =Y.
Letnow f € C’g’o(IR{d) such thatzle(vif)2 < 1. By the change of variable formula, we get

d
) - 1) =3 [ s
i=1
Sincek € ¢, we can findh in the Cameron-Martin space of the Brownian motion such that
ke = /t Ky (t,s)hgds.
Integrating by parts, we have then ’

T ) T T OK o
/0 Vif(z)dky = /0 </s 8—tH(t, S)Vif(zt)dt> hlds.

Therefore from Cauchy-Schwarz inequality, the isometryveen.”#” and ¢ and the fact that
S>% L (Vif)? < 1, we deduce that

(f(y) = F(2))* < R, TRl 2,17y = T2 1N,



Thus

d2(33 y) 2
L inf kll5e .
T2H = ke;fH,ng(x,k)zyH 1524

We now prove the converse inequality.
We first assume thatis close enough te so that there exigty;, - - - ,y4) € R? that satisfy

d
y = exp (Z yM) ().
=1

Let
fot KH(t7 S)KH(T7 S)dS _ R(t7T)
T2H Yi = T2H Yi.

K =
In that case, it is easily seen that
d

O (k)(t) = exp (Z R:(th,g ) yV) (z).

i=1

In particular,

Oo(k) =z, P1(k) = v.
Moreover,

HkHifH _ Z?:l Z/zz _ d2($’y).
T2H T2H

As a consequence

. 2 d? (z,y)

keéfH,g;f(x,k):y 1Kl < =

If  is not close tar, we just have to pick a sequencg = «, - - - , z,, = y such that

d(‘ri» xi-i—l) <e

and

—_

m—

d(z,y) =Y d(@i,zit1),
i=0
wheree is small enough.

The second keypoint is the following

17

Theorem 4.5. Fix g € M. Let F be aC* function onM. There exists a neighborhodd of x

such that ifyy € V is a non-degenerate minimum of

d2 (x07 y)

Fy) + —=—

then there exists a unique € 7% such that (a):®1(xo, ko) = yo; (0): d(zo,y0) = ||kol|.zy;

and (c): ko is a non-degenerate minimum of the functional— F(®;(zg, k)) + 1/2||k\|§fH on

-
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Proof. The first two statements are clear from Proposifion 4.4. W need to prove (c). To
simplify notation, let

G(k) = (@ (x0.K)) + 3 [F%,
Consider
u(t) = Glko + th),
and
o(t) = F(®y(z0, ko + th)) + %dz(wo, By (0, ko + t)).

Itis clear that
u(t) > o(t), u(0)=v(0) and u'(0)=1'(0)=0.
Thus
G =(0) 2 (0) = (F+ Jaloo )7 an) @a(ko).
Whenk ¢ Ker(d®q(xo, ko)), we surely have
d*G(ko)k? > 0.
In the casé € Ker(d®;(xo, ko)), we have
(4.2) d’G(ko)k* >0,  when yo = x.

To see this, first note that sinde € Ker(d®;(ko,x¢)) we can chose a family of patf:! €
C([0,1];RY);¢ € [0,1]} such thatf = 2t = 20 = 0forall (¢,s) € [0,1] x [0,1], and
dt
dt

= d(I)(ZL'(), k‘o)k‘
t=0

Moreover, we have! = &(0, k') for a family of pathk! € ;. Therefore
2

1 e (4
t=0 0 = )

This shows that it/>G (kg)k? = 0 thenk = 0, which proves[(4]2). Now the lemma follows by a
continuity argument. O

d2

2 k‘2 _
PCho)k = <

Remark 4.6. In the above lemma, it is clear that we can choose the neididmat}” of xy such
that for anyz € V, if y € V is a non-degenerate minimum B{y) + d(z, y)?/2, then the three
properties in the lemma are fulfilled.

4.2. Asymptotics of the density function. Consider

d
dX{=e) Vi(X;)dBj  with X§ ==.
=1
Before applying the Laplace approximationXg, we need the following lemma which gives us
the correct functionalg” and f.
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Lemma 4.7. Let V be in Remark4l6. There exists a bounded smooth fundfigny, z) on
V x V x M such that:
(1) For any(z,y) € V x V the infimum

2
inf {F(ac,y,z) + d(méz) ,Z € M} =0

is attained at the unique poimt More over, it is a non-degenerate minimum.
(2) For each(z,y) € V x V, there exists a ball centered atwith radiusr independent of;, y
such thatF'(z, y, -) is a constant outside of the ball.

Proof. See Lemma 3.8 in Ben Arols[8]. d

Let F' be in the above lemma and(x,y) the density function ofX;. By the inversion of
Fourier transformation we have

_Fzy,y) 1 . . _ F(z,y,2)
pa(x,y)e 52yy = (QW)d/ﬁ_ZC'ydC/GZC'Ze 52?! pa(x,Z)dZ
1 _iCy (oz _F(cv,y,z)
= | [T e

1 i (Xf-y) Flzy,X7)
e A G
s

It is clear that by applying Laplace approximation to theeaotption in the last equation above
and switching the order of integration (with respect}@nd summation, we obtain an asymptotic
expansion for the the density functign(z,y). On the other hand, we cannot apply the Laplace
method here directly since we need a uniform contrat @ndy. Also we need to show that the
use of Fourier inversion is legitimate.

To make the above prior computation rigorous, we modify thplace method in the previous
section as follows.

First note that by Lemnia 4.5, Assumptionl3.3 is satisfied.siam

d

dz;(x,y) =Y Vi(Zi(2,y))(edB] + dvi(z,y)),  with Z5(z,y) = z.
i=1

In the above(z,y) € V x V and~v(z,y) is the unique path in#z; such that®, (z, y(z,y)) = y
and||y(z,y) |z, = d(z,y).

Lemma4.8. LetZ; (z, y) be the process defined above, tiiiz, y) isC* in (e, z,y). Moreover,
there exists amg > 0 such that

n
sup sup 3B ( sup [D(@02000 7 (e, | < oo
e<eg z,yeVxV =0 te[0,1]

Herem, n are non-negative integerg,> 2 anda € {1,2,...,d}*, 3 € {1,2, ...,d}} are multiple
indices.

Proof. The first statement is clear. The second statement is a aoerseg of Lemmpa 212 O
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Now consider the stochastic Taylor expansion6r

N
(4.3) Zi =iz, y) + ) gf(xéi'y)ek + RN (g, 2, y)eN T
j=1
Here
o(z,y) = (z,7(z,y)),
and , N
Rivﬂ(z—:,:n,y) = / 8§+1Zf(3:,y)(1_7”)dv.
) N!
Let
0(c,z,y) = Flz,y, Z{ (z,y))
We have
(e, z,y) = 0(0,z,9) +0.0(0,z,9) +2U(e, z,y).

where

1
Ule.,y) = [ 826(e.2.9)(1 ~ ).
0
By our choice ofZ¢, itis clear

(44) 0(073:721) :F(:EvvaSl(x)y)) :F(:Evyvy)
Lemmd 3.8 gives us

1 .
(4.5) 9.0(0,2,) = /0 (K3) (K5 (2.9)).dB,.

Thus applying Cameron-Martin theorem for fBm (Theotfen 2v8 have

E, exp <z‘< : <x§ -y F@,E%, Xf))
e - 1 . 2
=E |exp (ZC (Z; Y _ F(:E’Elé’ Zl)) exp (—%/0 ((Kip) ' (Ky')),dBs — %)]

= exp [—;2} E; [exp <iC : gi(w,y)> exp <iC Ve, z,y) — U(e,w,y)ﬂ :

In the above

d*(x,
a(w.y) = Fla.y.y) + 20 —g

and
Z5(x,y) —y — egi(z,
V(E,:L', ) 1( y) :Z gl( y)

Similar to the argument in Section 2, we need to estimate

E, [eXp (iC 91 (:U,y)> exp (iC Ve zy) - U(e,w,y)ﬂ :

For this purpose, we need

= eR%(s,m,y).
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Lemma4.9. There exist' > 0 andey > 0 such that

1+ (e,2,y)

sup  sup Ee( < 00.

(z,y)eV xV e<eo
Proof. We only sketch the proof. Details can be found in Ben Allougjdih minor modifications)
and will not be repeated here.
Fixany1l/2 < A < H. One can show that fgg > 0 there exist constants' > 0, b > 0 and
g9 > 0 such that for alk < ¢p and all(z,y) € V x V we have

(4.6) E, {e—(1+C)U(a,x,y); | Z5 — ¢t($,y)”)\71 > p} < e;%’,

Here||-|| 5+ is theA-Holder norm up to time. The above estimate is a consequence of the following
application of the large deviation principle Xy, i.e.,

F(z,y,X7)
limsupe? log E, {e_ T X = b, y)laa > p} < —a(z,y) = 0.

e—0

On the other hand, applying Lemimnal3.9 we have, for éaclh) € V' x V there exists" > 0
andeg > 0 such that

sup EIE {e_(1+C)U(€7CC7y); HZ& _ (;5(1’, y)||)\71 S p} < 0.

e<eo

Since we have smoothness4f(z, y) (in x andy) andV x V' is contained in a compact subset of
M x M, the above estimate leads to

sup sup B, {em(FOVEED; 75— iz )01 < p) < oo
e<eo (z,y)EV XV

Together with[(4.6) the proof is completed.

Set
T(g, x, y) = eiC'V(E,w,y)—U(e,x,y)

and consider the stochastic Taylor expansion for it
N m
m € N+1
(4.7) Y(e,2,y,¢) = > 070, 2,9,0)— + vl 2,9, (),
m—0 m!
where
1-vV

N dv.

1
SN+1(anay7C) = / aéVHT(E%%yaC)
0
Lemma 4.10. For any non-negative integers [, m andn, and multi-indices € {1,2,...,d}*
andg € {1,2,...,d}!, we have
(1) For all p > 2, there existg, > 0 such that

n
sup  sup E<Z sup ||DJ(8:?658?Z< : V(vavy) - U(‘S’x’y)H%S) < 00.
e<egx,yeVxV =0 te[0,1]
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(2) There exist' > 0, K > 0 andey > 0 such that
n
; k+1
swp s B(Y sup [DI(@2050 T (e O ) < K(IC] +1)"
e<eg xz,yeVxV =0 te(0,1]
Moreover, we have

sup  sup E<Zn: sup HD’(@?@?@?(eic'g%(m’y)'f(z—:,:L",y,C))H e
— ]

1
kA
) < K (] + 1),
e<eg z,yeV XV te(0,1 HS

Proof. We follow the argument in Ben Arous[8]. Note that

1 1
i€-Vie,w,y) = Ule,x,y) = iC/O 02 27" (2, y)(1 — v)dv — /0 920(ev, ,y)(1 — v)dv.

The estimate in (1) follows directly from Lemrha #.8.
For the second statement, first note that

e”Y € Dom(D).
This is seen by an approximating argument and Ihé a closed operator. Moreover, we have
D(e™Y) = —(DU)e Y.

HenceTY is also in the domain ab.
Itis clear tha@g@{f@?”f is of the formW Y, whereW is a polynomial in¢ of degreen + |«| +
| 3] with coefficients derivatives (w.r.t;, y ande) of U(e, z,y) andV (e, x, y). Moreover,

D(030507"Y) = (DW +i( - DV — DU)TY.

The first estimate in (2) now follows immediately from (1) aneimma4.9. The last estimate in
(2) then follows from the first one in (2) and Lemial4.8. Thimptetes the proof.
]

With the above lemma, we are now able to obtain an asymptegiaresion for
E, [exp (iC 91 (w,y)> exp (iC Vie,z,y) - U(Emy)ﬂ :
Define
am(z,y,C) = Ey [exp (i¢ - g%(x7y))3?T(0,w,y,C)],
and
TN+1(€> r,y, () = Ew |:eXp (ZC ' g%(:ﬂ, y))SN+1(€7 x,y, C):| .
Recall [4.7), we obtain

E. [exp (iC : gi(ﬁw)) exp <iC Vie,z,y) - U(f:vx’y))]
&, |exp (i€ al(o) ) T .01 0)

N
= Z O4771('%7 Y, C)Em + TN+1(E7 z,Y, C)EN+1'

m=0
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Remark 4.11. Indeed, Lemmia4.10 provides us smoothness and boundedrgssod T 1.
So far, we have obtained that for glkc R?

iC- (X7 —y F(x,y, X5
By (00 0) _ Pl D)

N
_a(z,y)
=e 2 < Z Oém(%% C)Em +TN+1(E,$,?], C)EN+1>

m=0

N
= Z Oém(l', Y, C)em + TN+1(€7 z,Y, C)€N+1'

m=0

To apply the inversion of Fourier transformation, we needgrability of,,, andTx .1 in ¢, which
is answered in the following lemma.

Lemma 4.12. For any non-negative integeys k£ and/, and multi-indicesy € {1,2, ...,d}* and
Be{1,2,..,d}, we have
(1) There existd{ = K,(«, 8) > 0 such that

sup
(z,y)eV XV

(2) There existsy > 0 and K = K(p, N, «, 3,m) > 0 such that

20l (2,1, 0)| < Hgnzp (¢l + 1yt

sup  sup 92000 T4 (e, 2, y, € (lI¢]] + 1) N FDFEH

e<eo (z,y)eV XV

‘ B HCHQP

Proof. The lemma follows from integration by parts in Malliavin calus. Indeed, first note that
by equation[(5J7), the Malliavin matrix @f is deterministic, non-degenerate and uniform: and
y. By Proposition 5.7 and Proposition 5.8 in Shigekawa[23] Bemmd 4.B, for any proper test
functions, G € Dl there exist, G andr < ¢ such that

E(0°9(g})G) = E(¢(g1)la(G))

1
o ‘
<K (Z EDJG?{s) :

i=0

and

3=

(Ella(G)")

I and its Malliavin matrix and is uniform inz andy.
Applying the above integration by parts formula with

d p
Y(u) = e and 0 = (Z 812%) .
i=1

We have

o K i . ‘
B )| < 1 (ZE(DJG?{@) -

i=0
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Now the lemma follows by Lemnia 4.0 and replaci#gn the above by
Gl = 8;?856?T(07 z,Y, <)>
and
Ga = 20,9 (Sn1 (e, .y, Q) 91 ) e 491,
O

Now we only need to chos® > d + (N + 1) + k + [ in the previous lemma and obtain

_a(z,y) N

o) = (V) + tralen ).
m=0
Here
Bule.1) = gz [ Ol O
and
tnti(e,@,y) = ﬁ /TN+1(€79€7% ¢)dg.

Notice that thes,, (x, y, ¢) is an odd function il whenm is odd (cf, Ben Arous[8]). Now by the
self-similarity of the fractional Brownian motion andst= ¢ we obtain the desired asymptotic
formula for the density function.

4.3. The on-diagonal asymptotics. As a straightforward corollary of Theordm 4.2, we have the
following on-diagonal asymptotics:

ptz,z) = tHid (a0(z) + a1 ()t + -+ + an(2)t*" 4 o)) .

In this subsection, we analyze the coefficient$z) and show how they are related to some func-
tionals of the underlying fractional Brownian motion.

We first introduce some notations and remind some resultsribg be found in[[3],[[4], [24]
and [14]

If I =(iy,...,ix) € {1,...,d}* is a word, we denote by the Lie commutator defined by

‘/I: [%17[%27"'7[‘/@' ‘/2 ]]

The group of permutations of the sft, ..., k} is denotedSy. If o € &, we denote by(o) the
cardinality of the set

k—1)

{j€{l, k= 1},0() > o(j + 1)}
Finally, for the iterated integrals, defined in Young’s snge use the following notations:

@
AF[0, 8] = {(t1, ... tx) € [0,8]% 11 < ... < tr};

(2) If I = (iy,...i) € {1,...,d}" is a word with length,

/ dB! = / By - dBg¥.
AFK[0,1] 0<t1 <. <t <t
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() If I = (iy,...i) € {1,...,d}" is a word with length,

_1)¢elo) o N
AI(B)t = Z L/ dB;yl 1(741)”‘(13;;C 1(%)’ tZO
des e (k-1 Jostu< <n<t
e(o)

Theorem 4.13. For f € C°(R%,R) , 2 € RY, andN > 0, whent — 0,

N
FOE) = fl@)+3 % 3 (Vi Vi (@) / dB! + o(t2N+DH)
k=1

2k
I=(i1,...i2%) A2k[0,1]

= f (exp ( > AI(B)tVI> x) + o(tVH)
ILII|I<N
and

N
V) — f(g 2k H -V . I o(t@N+DH
BUOD) = f0+ o8 T (TR ( /. 2k[0,1}dB>+ (N +DH)

I=(i1,...i2¢)

=E (f (exp ( Z AI(B)tVI) ZU)) + o(tN)
L|I|<N

As a consequence, we obtain the following proposition whiey be proved as in[6] (or [19]).
Proposition 4.14. For N > 1, whent — 0,
p(t; 20, 20) = dY (z9) + O (tH(N+1_d)> ,
whered) (z¢) is the density ab of the random variable_; ;1< Ar(B):Vi(o)

This proposition may be used to understand the geometriaimgaf the coefficients (z() of
the small-time asymptotics

1
p(t;@,2) = g (ao(z) + a1 (@)t + - + an ()2 + o(£*")) .
For instance, by applying the previous proposition with= 1, we get
1 1
(2r)% [det(Vi(zo), -, Va(wo))|

The computation ofi; (x) is technically more involved. We wish to apply the previousgosition
with N = 2. For that, we need to understand the law of the random variabl

ao(wo) =

d t

, 1 L .

0 =Y BlVieo) +5 3. [ BidB]~ BBV V(o).

- . 0
1=1 1<i<j<d

From the structure equations, we have

d t
0, = Z (Bf +3 Z wfj/ BldBI — BgdB;) Vi(zo)-
0

k=1 1<i<j<d
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By a simple linear transformation, we are reduced to thelprolf the computation of the law of
the R%-valued random variable

1 t L
0, = Bf+5 > wg/B;ng—BgdB;
1si<y=d 0 1<k<d

At that time, up to the knowledge of the authors, there is rgieix formula for this distribution.
However, the scaling property of fractional Brownian maotiand the inverse Fourier transform
formula leads easily to the following expression

1 1

P, 20) = e o VG e (- @)+ o)),

wheregy (w) is the quadratic form given by
2

1 . Lo o
qr(w) = . / E (B0 [ > fwij, A) / BidB! — BldB! d.
8(2m)2 Jre 1<ici<d 0
5. APPENDIX

In this last section, we give proofs for the technical lemmvasused before.
Fix 1/2 < A < H. Let B(¢,p) € C*0,T;R?) be the ball centered atwith radiusp under
the A\-Holder topology

e = et sup LI foran 1 e X0, 73

Note that the\-Holder topology is a stronger topology than the usual ear topology.
Recall the two expressions faf*

(5.1) dZ; = o(Z;)(edBy + dry) + b(e, Z7 )dt
and
N il
(5.2) Z=¢+Y % +eNTIRY
j=0

Herey € 4, hencey € I ™/2(L2) ¢ CH(0,T; RY).

5.1. Proof of Lemmal3.7L We show, for allt € [0, 7T, there exists a constant such that for
large enough we have

Cr?
(5.3) P{l|lg1l|nt > r} < exp {—tQ—H}

Cr
P{llg2llae >} < exp {_tQ_H}
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and
(5.4) P{lleRi|lae > mt <T°} <p

Cr?
PR e 2 rit < 7% < exp {2 |

Cr
PRS2 rit <9 < oxp { — 0 .

HereT* is the first exist time ofZ¢ from B(¢, p).
We first prove the estimates fgr's. Write

55) o(2°) = 0(0) + 02 (O)(Z7 — 6) + 50m(d)(Z7 = )2 + O&)
and
(56) b(57 Za) = b(O, ¢) + bx(07 ¢)(Za - ¢) + %bxx(oa ¢)(Z€ - ¢)2 + O(Eg)

+ b.(0,0)e + ber(0,0)(Z° — ¢)e + O(e?)

+ %bag(O, ¢)52 + 0(53).

Substituting into the two expressions 4f gives us

(5.7) dg1(s) = 0(¢ps)dBs + 04(ds)g1(8)dvs + bz (0, ds)g1(s)ds + b (0, ¢s)ds.

and

(58) ng(S) :20'96((158)91(3)st + Uxx(¢s)gl (3)2d’}/s + Ux(¢s)92(3)d78
+ bmm(oa ¢s)gl(8)2ds + bx(oy 5253)92(8)(18 + bee(oa ¢s)d$
+ 2b€m(07 ¢s)gl (S)dS.

By (65.7) and Remark 211, it is clear that
Hgl”)\,t < CHB”)\,IH te [07T]7

whereC is a constant depending only 4|/ 7, ||v|/x,7 andT". This gives us the first estimate in

G3).
Similarly, by (5.8) and Remaifk 2.1 together with the estanaé just obtained fog;, we have

lg2llxe < CQ+ gillae + llgallR + lloallxell Bllxe)
< C|IBI3 -

HereC is also constant depending only (|| 7, ||v|[x,» andT. Hence we have proved (5.3).

In what follows, we prove (514). To lighten our notation, is@lssion that follows, we suppress
the supper-script in R; whenever there is no confusion.

Since we work inB(¢, p), the first inequality in[(5}4) is apparent. We therefore amded to
concentrate on the last two inequalities.
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First we use similar idea to deduce the equations satisfiell;biy= 1,2, 3. For this purpose,
define,ul, 2 andul, 12 by

(5.9) 0(Z%) = o(¢) + e
o (¢) + 02(9)(Z° — ¢) + pac”.

and

(5.10) b(e, Z°)

(07 Qb) +vie
(07 Qb) + bm(ov ¢)(Z€ - Qb) + bg(o, ¢)€ + 1/262.

Itis clear thatu;;i = 1,2 (resp.v;) are of the form! (e Ry )(Ry1)" (resp. v (eR1)(R1)"), where
y; are some functions of bounded derivatives determined laypdb. Hence inB(¢, p), 1,11
are functions ofR; with bounded derivatives, and there exists a constgntiepending only on
derivatives ofo andb, such that

b
b

(5:11)  [lpllae valoe < CA+ [ Rillag)  and  [lp2llae [v2lne < C(1+ | Ralne)?.
Equations[(5.2)[(511)[ (5.9) and (5110) give us
(5.12) dR1(s) = 0(Z5)dBs + pidrys + v1ds
dRy(s) = 2u1dBs + 2uadys + 04(¢) Radyy + bz (0, ¢s) Rads + 2vads.
Since we work with inB(¢, p), we have
1Z5]Iae < 19llae +p

hence

< C[[B|xe
At

t
/ o(22)dB,
0

for some constant’ depending only o, ¢ and derivatives of. By standard Picard’s iteration,
we conclude that

(5.13) [R1llxe < ClBlxe(X+ [Vllxne),  inBlg,p)

for some constant’ uniformly bounded ire.
The equation folR, is

(5.14) dRy(s) — 04(¢)Radys — b,(0, ¢s)Reds = 2u1dBg + 2puadys + 21v4ds.
Recall thatu; is of the formi; (¢ Ry )Ry, and inB(¢, p),

leRlxe < p-
We obtain

< p*C||B|Ixy
At

/Ot ) (eR1)(eR1)dBs

t
E/ p1dBs
0

At ‘
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for some constant’ uniformly bounded ire. Similarly,
t t t t

. / adns + 2 / vads|| = / PRy ) (R dys + / W (eR)(eR2)ds
0 0 a 0 0

< P2O| R |ne (L4 |1Vllae)
< p2C|BIas (1 + 7lIxe)
for some constant’ uniformly bounded ire. Hence by multiplying a factor

e {~ [t~ [ (0.0

to both sides of[(5.14) and integrating franto ¢, we conclude

Mt

- Cr?
P{lleRa|xs > rit <T°} < exp T 2pH [
This gives us the desired estimate 4£dt». A similar argument also gives us
Cr
P{||Ral[xs >t <T°} <exp {—ptﬁ} .
Continuing this type of argument, the equation foyis given by
1
dR3(S) - Ux((b)R?)d’Ys - ba(oa ¢)R3d$ = U(¢)R2st + ,u2st + ,u3d75 + iaxx((b)RlRZd’Ys
1
+ me(o, ¢)R1R2d$ + v3ds + be,w(O, ¢)R2d8.
By (5.11) and[(5.113) we conclude thati(¢, p) we have forall < ¢ < p
t
5/ o(¢)Ra + padBs
0 At

and similar estimates for the rest of the terms on the rightilsdde of the equation fadrs;. Hence

< pC|BI .

Cr
]P){”ER,?,H)\’t 2 T7t S TE} S exXp {_ptﬁ} .

Therefore, we have proved (5.4).
5.2. Proof of Lemmal3.9. For the convenience of quick reference, we re-state the kimare.

Lemmab.l. Let
0(c) = F(Z%) = 6(0) + £0/(0) + U (e)
whereU (¢) = fol(l —v)0"(ev)dv. There exis3 > 0 andey > 0 such that
sup E <e_(1+B)U(€); VARS B(¢,p)> < 00.
0<e<eg
Observe that
1 1
(25 — ¢)? =g + 5539132 + §€3R1R2.
Thus, if we write

Ule) = %9"(0) +2R(e)
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then

(5.15) |R(e)| < C(|Rs| + |g1]| Ra| + [Rol|[Ra| + |RT)).
Together with the fact that R, | < p we obtain
leR(e)| < C(|eRs| + |g1lleRa| + p|Ra| + p|RT).

Hence, from the estimates in Leminal3.7, we conclude thatcine > 0, there existg(«) such
that for alle < p < p(«), we have

sup E (e(HO‘)‘sR(E)';t < T‘e) < 00.
0<e<p

Therefore, to prove Lemnia 3.9 is reduced to prove the foligwi

Lemma5.2. There exists @ > 0 such that
1
Eexp {—(1 + ) [59”(0)] } < 00.

Proof. We follow the proof in Ben Arous|7]. Since

U(0) = 560 = 5 |dF O + F Ot
it is clear that to prove the above lemma, it suffices to prbe for sufficiently large- we have
(5.16) P {—% [dF(qS)gg + d2F(¢)gﬂ > r} <e O withC > 1.
Set

Y® = (eg1,€%g2)
with
AYE = 5 (s, Y°)dBs + b(e, s, Yo)ds, Y& =0.
Herea andb are determined by (5.7) and (5.8). Definec C([0, 7], R??) by
A={¢ = (¥1,42) € C([0,T],R? x RY) : dF(¢)y2 + d°F($)yF < —2}.
We have

1 1
Pre e a) = {3 |ar @y + EF] = 5 )
and by the large deviation principle féfr
limsupe?logP{Y® € A} < —A*(A).

e—0

Here A* is the good rate function df . It is clear that to prove inequality_(5.16) it suffices to
prove thatA*(A) > 1.
Recall that

A*(A) zlnf{ilk@ﬁ[;@ (k) € A}
whereu = ®*(k) is the solution to the ordinary differential eugaiton
dus = &(s,us)dks + b(0,5,us)ds, withug = 0.
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It is easy to see froni (3.4), (3.5), (5.7) ahd {5.8) that weetexplicitly
u = (dP(y)k, d>®(7)k?).

By our assumption H 2 and the explanation after it, theretexisc (0, 1) such that for alk €
1 — {0} we have

d*F o ®()k* > (=1 +v)|k[3,,
or
_t
1—v

1
k20 > —5——(d*F o ®(7)k?) = —

1—-v
Therefore, if¢* (k) € A, we have

(d*F()(dP(7)k) + dF (6)(d*®(7)k?)).

1 1
Skl > —— > 1,

which impliesA*(A) > 1 and completes the proof. O
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